

Advanced tests for Python

Mario Alviano

Secure Software Design

Outline

● Type hints
● Dataclasses
● Type and value validation
● Fixtures
● Mocks and patches

For these slides you may refer Chapter 3 of
Clean Architectures in Python by Leonardo Giordani,

https://leanpub.com/clean-architectures-in-python

https://leanpub.com/clean-architectures-in-python

Running example

Car Dealer

We want a TUI for storing
cars and motos

(plate, producer, model, price)

A discount is applied
as we did in Java

We limit to add and remove,
and sort by producer and price

Third-party modules

● A simple approach to validate types and values can be to use IF statements,
and raise exceptions

● We better reuse third-party modules and new features of Python
● Type hints can be used by a static analyser

– But also for dynamic validation with typeguard
https://typeguard.readthedocs.io/en/latest/userguide.html

● Dataclasses are convenient to define classes from annotations
– https://docs.python.org/3/library/dataclasses.html
– dataclass-type-validator automates type validation of dataclasses

https://github.com/levii/dataclass-type-validator
● For futher validation we can use valid8

– https://smarie.github.io/python-valid8/

https://typeguard.readthedocs.io/en/latest/userguide.html
https://docs.python.org/3/library/dataclasses.html
https://github.com/levii/dataclass-type-validator
https://smarie.github.io/python-valid8/

Enforces type validation on all methods with type hints

Generates __init__, __eq__, and other methods,
inhibits changes, generates __lt__ and other methods

Annotation: dataclass Plate has a field value of type str

This method is called after __init__ to add further validation

validate() is provided by valid8Custom __str__

Wrapper for dataclass-type-validator
to make exceptions uniform

Custom validator for valid8
to enforce regex

Project structure

Project modules

domain classes,
generic menu classes

(could be a third-party module),
I/O classes of the app

Tests here, the folder reflects the structure of
all other folders and modules in the project

One test_* file for every module of the project

Utilities to ease validation
(could be a third-party-module)

Data are automatically loaded from and
saved to this file

Test for wrong values,
we expect exceptions

Test for correct values,
we expect to read back the values

Try to cover all lines of code
with your tests

Discount in thousands

Test boundaries, string representation,
and any non-trivial computation that

the class must do

Use type hints
as much as possible

PyCharm uses them
to help you code

If we have to fail,
better to fail soon

typechecked will
let us fail!

Price, never simple

Price expressed in cents, we must be precise

Create Price from euro and possibly cents

Let’s disable the constructor to avoid confusion:
How? It cannot be private in Python!

Provide parse methods for non-string domain primitives

We will use @property
to define euro and cents

Non-trivial calculation
always comes with tests

create_key is an extra argument of __init__ (and __post_init__)

__create_key is a private class variable
(actually, the name is randomized)

We pretend to have
create_key == __create_key

Since __create_key is not accessible from outsite Price,
the constructor of Price can be called only inside Price

This is how we make
a private constructor

in Python

Use a string as type hint if the type is not-yet-fully-defined

Do it for methods that return instances of the class

If you do it somewhere else,
likely you have circular dependencies

A property is a self-only method
that we want to access without parenthesis

We can also specify a setter,
but not for a frozen dataclasse

Price knows Discount, but
Discount doesn’t know Price

Unless there’s a valid reason,
avoid circular dependencies

Cars and motos, should we bind them?

Duck typing

If it walks like a duck and it quacks like a duck,
then it must be a duck

Car and Moto will have the same fields,
and most of their logic is common

We may opt for an hierarchy,
but it’d be justified more technically than

from a domain point of view

As we will see,
not a lot of code

KISS

We can define fixtures for objects that we want to use in many tests

Pass the name of the fixture as an argument
to access the object returned by the fixture

As many times you like

It may help to save to file

We could also derive it
from the name of the class,

but... KISS

Price with discount accessible
with a different method

Avoid ambiguities!

We can use arithmetic comparisons
because Price is @dataclass(order=True)

Moto is essentially the same,
at least at the moment

Don’t bind concepts that can stay separated

The Dealer must provide all functionalities, but must not care about I/O operations

Test all the functionalities

TDD: test first, code later

Not a religion, it’s also OK to test and code in parallel

Union[Car, Moto] means
either a Car or a Moto

default_factory is
a method to call

to create the default value

init=False is to exclude
this field from __init__

Nothing special
in the remainder

Menu: Description and Key

Menu: Entry

How can we check if on_selected work?

We have to simulate a call, and check that the call was actually completed

In Python this is usually done by a Mock

Mock is an object on which
essentially all methods can be called

Calls are recorded, and can be later checked

Let’s use the __call__
dunder method

We could also use
mocked_on_select.foo()

Simulate a call to entry.on_selected

Check that the mocked method
was actually called

We can also check call arguments

We can also mock global objects,
 objects declared somewhere else

For this purpose we use patches
This is the name of
the patched object

We would like to
print something
when selected

Let’s verify that print
was indeed called with

argument ‘hi’

The Menu itself We are going to call this function
after printing the description

We exclude __entries and
__key2entry from __init__

because their values are implicit

We want a builder,
so let’s use the

create_key pattern
to have a

private constructor

The builder will add
entries with this

protected method

We use create_key
to make it callable
only by the builder

The builder has the key

Print description, call auto_select,
and print all entries

Let the user select an entry

Keep asking until a valid choice is given

Menu loop

The Menu.Builder

Do not release the key

Fluent interface

build cannot be called twice

menu must have an exit entry

Use side_effect to list return values of a patched object

Check that the first entry
was indeed selected

Check for mistakes… users will do many!

The App Fix the menu on construction

Call methods to handle events

More handlers

Load and save

Ignition

Global exception handler

Avoid to leak sensitive data

Dirty trick to reach 100% coverage

Private methods are good to ensure that a class is not used improperly,
but may also make testing more difficult:

reaching all paths may be challenging

Relying on global objects, like input() and print(), simplifies the code,
but may also make testing more difficult:

heavy need of mocks and patches

As a general rule, avoid to hardcode global objects

Better to have some way to set those objects,
and have the global objects as default values

Anyhow, let’s test the App we have now

We have often to bypass the check
on the existence of default.csv,

so let’s define a fixture

We have also to simulate
the reading of default.csv,

so let’s define another fixture

A patch can be also applied this way

For open() we can use mock_open(),
provided by unittest.mock

Simulate main execution

Check for some expected output

Test reading of file

But also stability on corrupted files

Test for correct usage

But also for stability
on mistakes

Test the global handler
by introducing some unexpected exception

Coverage, the higher the better

Every metric can be tricked, don’t trick yourself

Use the coverage analysis to identify missing tests and unreachable code

Inspect Code

Menu Code | Inspect Code…
Menu Code | Code Cleanup…
Menu Code | Optimize Imports

Use them, check every warning that is reported

Enjoy the final result

Exercise: Restaurant

Write a TUI to manage a restaurant, and specifically the list of orders.

For an order we are interested in the customer, a textual description and the price. From the discussion with the
expert domain we understood that the customer can be represented by strings of letters, numbers and spaces; the
length of such strings doesn’t exceed 100 chars. The same restrictions apply to the description of an oder. The
price must be represented in euro, with two decimal digits, and cannot be a negative quantity.

The application must allow to
● show all orders
● add and remove orders
● show the list of customers
● restrict the visualization to the orders of a given customer
● sort the orders by ascending price

Data must be saved automatically on disc in a file default.csv in the root of the project and loaded when the
application starts. We expect tests, too… should I still say it?!?

Exercise: Music Archive

Write a TUI to manage a music archive, and specifically the list of songs.

For a song we are interested in the author, the title, the genre and the duration. From the discussion with the expert
domain we understood that the author can be represented by strings of letters, numbers and spaces; the length of
such strings doesn’t exceed 100 chars. The same restrictions apply to titles and genres. The duration must be
shown in minutes and seconds (eg. 3:25 for 3 minutes and 25 seconds); choose the internal representation.

The application must allow to
● show all songs
● add and remove songs
● show the list of authors
● restrict the visualization to the songs of a given author
● sort songs according to several criteria (of your choice)

Data must be saved automatically on disc in a file default.csv in the root of the project and loaded when the
application starts. We expect tests, too… should I still say it?!?

Exercise: Medical Office

Write a TUI to manage a medical office, and specifically the list of reservations.

For a reservation we are interested in the name of the patient, the scheduled time, the type of visit and the
cost. From the discussion with the expert domain we understood that the patient can be represented by
strings of letters, numbers and spaces; the length of such strings doesn’t exceed 100 chars. The same
restrictions apply to the type of visit. The scheduled time must be shown in hours and minutes (eg. 15:20 for
20 minutes past 15); choose the internal representation. The cost must be represented in euro, with two
decimal digits (and definitely it’s not a negative number).

The application must allow to
● show all reservations, always sorted by ascending scheduled time
● add and remove reservations
● restrict the visualization to reservations scheduled after a given time

Data must be saved automatically on disc in a file default.csv in the root of the project and loaded when the
application starts. We expect tests, too… should I still say it?!?

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

