

Django REST Framework – Part 2

Mario Alviano

Secure Software Design

Outline

● Consume the API
● Authentication
● Authorization
● Tests
● Validators

Consume the API:
a Javascript example

Create index.html in an empty directory

Allow requests from
front-end server

Start the front-end server

Visit http://localhost:8001

When data are fetched...

Plain Javascript is likely the worst option

Prefer some library or framework:
Svelte, Vue.js, jQuery, React, Angular

Do requests from Python or Java and consume the API
within a TUI or GUI

Consuming the API:
a Python example

Session-based authentication

● Stateful approach
● The client sends the initial credentials
● The server stores in the session object that the user is

authenticated
● The client stores the session ID (usually, cookie)
● Session ID is sent on all requests
● After log out, the session is destroyed on both parts

Let’s keep session-based authentication for the browsable API

Token-based authentication

● Stateless approach
● The client sends the initial credentials
● The server generates a unique token
● The client stores the token (cookie or local storage or

anywhere a setting like this can be safely stored; it’s more
like a key for using Google Maps API)

● The client sends the token with each request

By default, Django generates a token for each user and store it in the database

Alternatives are usually based on JWT and OAuth2 and don’t need to store anything

What we need

● Add URLs for session-based authentication
● Setup token-based authentication

– rest_framework.authtoken
● Setup login, logout and reset endpoints

– dj-rest-auth
● Setup registration endpoints

– django-allauth

Must be installed

Must be installed

Needed by allauth, allows to handle
multiple sites in the same project

Add authorization apps

Support session and token authentication

Disable email verification for simplicity
We have only one site, so let’s assign ID 1

Session-based authentication
for the browsable API

It’s out of our REST API

Token-based authentication as part of our REST API

Let’s migrate the database and start our project

Avoid ambiguities,
add a prefix to posts URLS

The browsable API now supports log in and log out operations

URLs for token-based authentication

http://127.0.0.1:8000/api/v1/auth/login/

http://127.0.0.1:8000/api/v1/auth/logout/

http://127.0.0.1:8000/api/v1/auth/password/reset/

http://127.0.0.1:8000/api/v1/auth/password/reset/confirm/

http://127.0.0.1:8000/api/v1/auth/password/change/

http://127.0.0.1:8000/api/v1/auth/login/
http://127.0.0.1:8000/api/v1/auth/logout/
http://127.0.0.1:8000/api/v1/auth/password/reset/
http://127.0.0.1:8000/api/v1/auth/password/reset/confirm/
http://127.0.0.1:8000/api/v1/auth/password/change/

Authorization

● Authentication deals with who are you
● Authorization deals with what can you do
● Restrict the default permission to admin only
● Authorize based on a per-view or per-object policy
● Take advantage of Django permissions and groups

Only admin is authorized

Default policy must be restrictive

Avoid to accidentally leave unauthorized usages of your API

Specify different permissions on views

In this case everyone can read posts,
but only authenticated users can change them

No form is shown in the browsable API

No delete button is shown
in the browsable API

Let’s restrict change to authors

Let’s restrict read to authenticated users

IsAuthorOrReadOnly is written by us

Let’s add permissions.py to our app

Do we have permission on the view?

This is the default implementation,
we can also omit it

Do we have permission on this object
provided by the view?

Add this file
to the posts app

Be aware of what we are doing

We are just experimenting!

In a real setting, authors of posts
would be fixed to request.user

That said, we would implement the POST view
with a different serializer not including field author

Can we restrict the view in a way that users
can only read their own posts?

Yes! The view must filter the objects in the queryset

Let’s add a new view
(or, in a real setting,

modify the existing one)

We can filter the queryset
by defining this method

If you opted for a new view,
add URLs for it

Django provides a rich set of permissions for users and groups

Let’s add a post_editors group with all permissions on posts

Add a user to the post_editors group

Also add another user with only posts | post | Can view post permission

Role-based authorization

Authorize views to members of specific groups

The group represents a role

Permission-based authorization

Authorize views to users
with specific permissions

Note that users inherit
permissions of their groups

Consuming the API:
the Python example reloaded

Tests

● Test first, code later
● We have a lot of code, but no tests
● Just because we are learning Django, we first focused on

code
● Time to fix this and add a few tests
● From this point, we should prefer a TDD approach

Setup

Install pytest-django and mixer

Set pytest as test tool

Add a run configuration for pytest in path tests

Create test files for models.py and urls.py

It’s possible to test also views.py, but more tedious
and somehow implicit in test_urls.py

Since we keep tests in directory tests,
we can also remove tests.py in the app module

Add pytest.ini in the root of the project and
point to settings.py (unless you want to specify

different settings for testing)

If everything works, let’s write our first test
db is a fixture, an object we can
use in our tests, in this case to
access the temporary database

used by tests

mixer creates objects from
our models, with random values

for non-provided fields

Call full_clean on an object
of our model to validate it

We can also check the message of the exception,
but I would not encourage this practice

This test passes, it had to be written before the code!

Let’s write a failing test, then fix it
This test fails because we currently
allow any text of 50 chars or less

We can define validators as functions

Let’s add validators.py to our app

A list of validators can be specified
for each field of the model

Django provides many
common validators

Test URLs, mainly for permissions

We can define our own fixtures,
for example to populate the DB

We use APIClient to simulate
an API consumer

Method get() to perform a GET request

Arguments for the URL
are specified in this dictionary

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 30

