
  

Django REST Framework – Part 1

Mario Alviano

Secure Software Design



  

Django

● A mature framework for web development (since 2005)
● Written in Python (so we like it)
● Proved to be solid (many tools, libraries, REST framework)
● We introduce the minimum notions to start using it
● We focus on REST APIs (back-end)

These slides are based on the book
Django for APIs – Build web APIs with Python and Django

by William S. Vincent
http://leanpub.com/djangoforapis

(mainly Chapters 5-9)

http://leanpub.com/djangoforapis


  

Outline

● What is a REST API
● Django projects
● Superuser
● Setup Django REST Framework and documentation
● Apps and models
● Define a REST API
● Refactor with viewsets and routers



  

Why REST APIs

● Monolithic websites should stay in the past
– Back-end: database models, URLs and views
– Front-end: templates of HTML, CSS and JavaScript
– Why mixing the two aspects?

● Modern websites should separate back-end and front-end
– Django for back-end, and only for data operations
– Use the front-end you like
– Use more than one front-end: browser, Android, iOS



  

HTTP

CRUD HTTP verbs

Create POST

Read GET

Update PUT

Delete DELETE

HTTP is a request-response protocol
Often used for CRUD functionalities

Endpoints are URLs that expose and
receive data (in JSON or XML)



  

REST

● REpresentational State Transfer
● Architecture for building APIs on top of HTTP
● Stateless (every request should be independent from 

previous requests)
● Relies on HTTP verbs (GET, POST, PUT, DELETE, …)
● Represents data in JSON or XML



  

Create a new project

Let’s use pip

The book describes the
command-line procedure:
1)create a virtual environment
2)install django
3)create a new project with
django-admin startproject blog_api

PyCharm will do all these stuff for us



  

Anatomy of Django Projects

manage.py is a script for the developer to run various Django commands

We will use it, but we usually don’t need to modify it

settings.py contains the configuration of the project

templates will contain all HTML pages of the project

urls.py will contain all routes of the project

WSGI is a standard
for Python web servers

ASGI is a standard
for asynchronous servers



  

About settings.py

Before deploying to production,
we have to change something here!

Essentially a file of variable declarations

All variable names are UPPERCASE and considered constants



  

Django will search for
templates here

Static resources (aka as-it-is files) are searched here

For REST APIs we don’t really need them!

Remove templates if you want

Keep static files for the admin site



  

Start the project

With PyCharm is quite easy:
just click the run button

Create or upgrade
the database

You should also migrate the database first



  

Start the server
on localhost

From the command-line (and behind the scene)



  

Visit http://127.0.0.1:8000/ with your browser

Log and debug information
on STDERR

http://127.0.0.1:8000/


  

Create a superuser

● Create a superuser from the command-line
● Avoid the username admin (always)
● Password? Generate them

https://www.lastpass.com/it/password-generator 

https://www.lastpass.com/it/password-generator


  

Change the default URL
for the admin site



  

Run the server and visit
http://127.0.0.1:8000/admin-IMinewINTANG

Log in with the superuser
credentials

http://127.0.0.1:8000/admin-IMinewINTANG


  

Install Django REST Framework

Menu File | Settings

Project | Python Interpreter

Add the package djangorestframework

Pipfile is updated!



  

Since you are there,
install also

django-cors-headers

The front-end will be on
a different server, so

we want to limit requests
to known domains



  

Add rest_framework and corsheaders to the installed apps in settings.py

We will set permissions later



  

Add CorsMiddleware
before CommonMiddleware

Whitelist allowed origins



  

Let’s also setup the documentation

Install coreapi and pyyaml

Add this dictionary
in settings.py

Human-readable
documentation

Machine-readable
documentation

We will check these URLs later



  

Creating Apps
(isolated components)
● Run ./manage.py startapp posts
● A new module is added

Alternative

Menu Tools | Run manage.py Task…

Type startapp posts

PyCharm provides autocompletion

Stores migration files to upgrade the database

Add content to the admin site

App specific configuration

Database model, tests and views



  

Install the app

● Add the app to settings.py



  

Define the model

● We want a Post table with five fields: author, title, body, 
created_at, updated_at

● Django provides a User model (aka table)
– Use get_user_model() to avoid problems

Small strings

Large amounts of text

Used by the admin site

Join to other tables



  

Let’s add Post to the admin site

Upgrade the database

Make migration files
(you may want to put them in git)



  

Visit the admin site

The app POSTS has the objects Posts

Let’s add a couple of posts, try to do mistakes, and so on



  

Define the REST API

● Three main steps
– add serializers.py to produce JSON
– use views.py to apply logic to each API endpoint
– add urls.py for URL routes



  

With ModelSerializer is easy as specifing
the model and the fields to expose

Add serializers.py to the app directory



  

Modify views.py

List all posts

All operations for a single post



  

Add urls.py to the app directory

Empty path to list all posts

Primary key to operate on a post

Include the new file in the main urls.py

Use version number for the URL



  

Browsable API

Visit http://127.0.0.1:8000/api/v1/

List of posts here

A new record can be added here

http://127.0.0.1:8000/api/v1/


  

Visit http://127.0.0.1:8000/api/v1/1/

Post details here

The record can be updated here

http://127.0.0.1:8000/api/v1/1/


  

Visit http://127.0.0.1:8000/docs/

http://127.0.0.1:8000/docs/


  

Visit http://127.0.0.1:8000/schema/

http://127.0.0.1:8000/schema/


  

Refactor

A viewset can replace multiple views

A router generates URLs for a viewset



  

Questions


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 44

