

Introduction to Test-Driven Design

Mario Alviano

Secure Software Design

Introduction

● Test-Driven Design (TDD) is a methodology
– It helps to create better code
– It will not solve all your problems

● Not a religion
– Do not commit blindly to it
– Understand it, don’t let it dominate you

These slides are based on Chapter 1 of Clean Architectures in Python by Leonardo Giordani

https://leanpub.com/clean-architectures-in-python

https://leanpub.com/clean-architectures-in-python

A real-life example

Boss: I just met with the rest of the board. Our clients are not
happy, we didn’t fix enough bugs in the last two months.

Programmer: I see. How many bugs did we fix?

Boss: Well, not enough!

Programmer: OK, so how many bugs do we have to fix every
month?

Boss: More! How to understand if we improved “enough”?

What are we going to measure?!?

Foggy concepts

● Avoid to work with nebulous
concepts

● Heap here is foggy
● We want to work with very

precise concepts
● We must measure

something to understand if
we improved something!

The idea of TDD

● Write a function and expect it “to work” (?)
– How do you test if the function “works”?
– What do you mean by “works”?

● TDD forces you to clearly state your goal before you write
the code

TDD mantra

Test first, code later

Not just for software, apply it everywhere!

Whatever you are going to do,
you want first to clearly define
your goals and a reproducible

procedure to measure your achievements

Example of test

● sum(4, 5) == 9
– There will be a sum function available in the system
– The function accepts two integers
– If the two integers are 4 and 5, the function returns 9

● But if “test first, code later”, then the test will fail
– True, and expected
– The test is an evidence that some feature is missing in the system

A simple TDD project

● Let’s apply TDD to create a
calculator

● First, let’s check the final result
● Create a new project with PyCharm

from the following git repository:

https://github.com/pycabook/calc

https://github.com/pycabook/calc

Use a virtual environment

Menu File | Settings

Select Project Python Interpreter

Add a new Python Interpreter

Let’s use pip

Usually .venv directory

Activate the environment

Install all requirements

Run all tests

Run tests with PyCharm

Menu Run | Edit Configurations...

Click the plus button and
select Python tests | pytest

If you want,
restrict pytest to the tests directory

Alternative: right-click the tests directory, and Run ‘pytest in tests’

Click here

If you don’t see
pytest, menu

File | Settings,
Tools | Python

Integrated Tools

Select pytest here

Requirements

The goal of the project is to write a class Calc that performs calculations: addition,
subtraction, multiplication, and division

● Addition and multiplication shall accept multiple arguments
● Division shall return a float value, and division by zero shall return the string "inf"
● Multiplication by zero must raise a ValueError exception

The class also provides a function to compute the average of an iterable like a list
● This function gets two optional upper and lower thresholds and should remove

from the computation the values that fall outside these boundaries
● For an empty sequence, the average is undefined and the function returns None

Requirements on multiplication and division are strange… it’s just an example!

Start a new project

Use pip

Set pytest for tests

Add a tests directory

Pipfile should look like this one

Your first test

● Create file tests/test_calc.py with the following content:

Have you noted the errors? They are expected! We are going to fix them now

pytest discovers tests

Every test_* function
is a test

A test fails if it raises
an exception

Let’s fix the failing test

Create file calc/calc.py

I know, the class is very minimal, it’s not implementing the requirements

TDD: The requirements are used to write the tests, the tests are used to write the code.

Our first test still fails

Class Calc has no
add method

Stop here! All tests are satisfied

Do you want more? Give me more tests!

Obviously, here we are exaggerating,
but it’s just to give the idea

Who said more tests?

● Requirement: Addition and multiplication shall accept
multiple arguments
– Not only two, but possibly three, four, and so on

● Let’s add a test to tests/test_calc.py

Minimum code fix the failing test: add a third argument

Oops! We just broke test 1

That’s good! We call it a regression test fail

We know that the problem was introduced in the last change

What if test 1 was not here to help?

Actually, also test 2 is failing

Focus on one failing test
at time

Previously passing tests
should get priority

(they are easier to fix;
just unroll the last change)

Let’s add a third argument
with default value

Test 1 passes

Test 2 fails: fix with return 15?
Would broke test 1, so no

TDD is slow

● Yes, it is
● You would do must faster without tests
● Until something will break

– Time to search for the bug
– How long was the bug there?
– How do you find it? You have to write examples

Those examples are tests!!!
Wasn’t better to write them once and for all?

We are not done

● Requirement: Addition and multiplication shall accept multiple arguments
– Not only two, but possibly three, four, and so on

● We cannot test infinitely many cases
● We should test at least boundary cases

– What are the corner-cases of our algorithm?
● Example: input from 1 to 100

– You may not need to test 42
– But you should test 1 and 100
– And you should also test for errors, when 0 or 101 are used

In TDD a solution is not correct when it is beautiful, when it is smart,
or when it uses the latest feature of the language

TDD wants your code to pass the tests

TDD doesn’t cover all the needs of your software project:
your code might be ugly, convoluted, and slow

Subtraction

● We need a function to implement subtraction
– Multiple arguments are not mentioned
– We limit to two operands
– We write a test from the requirement

The fix is simple

We don’t really need to do all the passages we did for addition

We did all those steps to better understand the approach

Multiplication

● Similar to addition

A non-failing new test… should we keep it?

Well, it tests for multiple arguments, so in this case yes, let’s keep it

Usually, new tests must be failing. If not, ask yourself if the new test makes sense

Refactoring

● If all tests pass, we can refactor
● Do not refactor without tests

– How can you be confidend that you are not breaking
something?

– Better to write tests before refactoring
– Better with TDD:

no tests, no code

Always tests boundary cases

Division

● There must be a division function returing a float

Requirement: division by zero shall return the string "inf"

Very strange, but it is just an example

Testing exceptions

● Requirement: multiplication by zero must raise a
ValueError exception

● We can use pytest.raises to assert exception raising

A more complex set of
requirements

● A function to compute the average of an iterable
● This function shall accept two optional upper and lower thresholds to remove outliers
● Let’s break to simple tests

– The function accepts an iterable and computes the average, eg. avg([2, 5, 12, 98]) == 29.25
– The function accepts an optional upper threshold, eg. avg([2, 5, 12, 98], ut=90) == avg([2, 5, 12])
– The function accepts an optional lower threshold, eg. avg([2, 5, 12, 98], lt=10) == avg([12, 98])
– The upper threshold stays in, eg. avg([2, 5, 12, 98], ut=98) == avg([2, 5, 12, 98])
– The lower threshold stays in, eg. avg([2, 5, 12, 98], lt=5) == avg([5, 12, 98])
– The function works with an empty list, eg. avg([]) == None
– The function works if the list is empty after outlier removal, eg. avg([12, 98], lt=15, ut=90) == None
– The function outlier removal works if the list is empty, eg. avg([], lt=15, ut=90) == None

All test pass. Refactoring time!

Tests from bug reports

● A bug is an example of a missing test in your suite

What if lt is 0?

Fix

Same problem for ut

Note that we are refactoring… luckily we have regression tests!

Last thing, but not least, let’s try to run tests with coverage analysis

Lines of code that are not covered by tests are either unreachable or witness missing tests

Summing up

1)Test first, code later

2)Add the bare minimum amount of code you need to pass the tests

3)You shouldn’t have more than one failing test at a time

4)Write code that passes the tests. Then refactor it.

5)A test should fail the first time you run it. If it doesn’t, ask yourself
why you are adding it.

6)Never refactor without tests

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

