: =5 UNIVERSITA
Secure Software Design CALABRIA

Introduction to Test-Driven Design

Mario Alviano

Introduction

e Test-Driven Design (TDD) is a methodology
— It helps to create better code
— It will not solve all your problems

* Not a religion

— Do not commit blindly to it
- Understand it, don’t let it dominate you

These slides are based on Chapter 1 of Clean Architectures in Python by Leonardo Giordani

https://leanpub.com/clean-architectures-in-python

https://leanpub.com/clean-architectures-in-python

A real-life example

Boss: | just met with the rest of the board. Our clients are not
happy, we didn’t fix enough bugs in the last two months.

Programmer: | see. How many bugs did we fix?
Boss: Well, not enough!

Programmer: OK, so how many bugs do we have to fix every
month?

Boss: More! How to understand if we improved “enough”?

What are we going to measure?!?

Foggy concepts

1,000,000 grains of sand is a heap of sand (Premise 1)

A heap of sand minus one grain is still a heap. (Premise 2)
So 999,999 grains is a heap of sand.

A heap of sand minus one grain is still a heap. (Premise 2)
So 999,998 grains is a heap of sand.

So one grain is a heap of sand.

Avoid to work with nebulous
concepts

Heap here is foggy

We want to work with very
precise concepts

We must measure
something to understand if
we improved something!

The idea of TDD

* Write a function and expect it “to work” (?)

- How do you test if the function “works”?
- What do you mean by “works”?

 TDD forces you to clearly state your goal before you write

the code

/ Not just for software, apply it everywhere!

TDD mantra
Whatever you are going to do,

Test first, code later you want first to clearly define
your goals and a reproducible
procedure to measure your achievements

Example of test

- There will be a sum function available in the system

- The function accepts two integers

- If the two integers are 4 and 5, the function returns 9
* But if “test first, code later”, then the test will falil

- True, and expected
— The test is an evidence that some feature is missing in the system

A simple TDD project

* Let’s apply TDD to create a

|
il calculator
* First, let’'s check the final result
PyCharm . .
* Create a new project with PyCharm
from the following git repository:

https://github.com/pycabook/calc
=) Goxrom Voreion Control

https://github.com/pycabook/calc

Use a virtual environment

@ Settings A X
Project: calc » Python Interpreter
v Appearance & Behavior Python Interpreter: | <No interpreter=> Add...
Appearance Show A
Menus and Toolbars Package Latest ve 1 ar
4 8.0.828
- 3.13.0
0.6.1
e A 50.3.2 o4
six 1.15.0
ts
Path riable
Keymap
> Editor

Plusins Menu File | Settings

> Version Control

v Project: calc

= Select Project Python Interpreter

Project Structure
> Build, Execution, Deployment
> Languages & Frameworks

> Tools

Add a new Python Interpreter

oK Cance Apply

Add Python Interpreter

& Virtualenv Environment lew environment
Conda Environment

fhome/malvifworkspaces/pycharm/calc/.venv
= on3.8

penv Environment

SSH nherit global site-packages

Vagrant Make available to all projects
w Docker Existing environment
& Docker Compose

Let’s use pip

Usually .venv directory

g@pandor:

jorkspaces

e — p—
cCharmycalLc

[Tue Nov 10 . R

.venv/bin/activate

(.venv)

(.venv)
pytest -svv

platform Llinux

$ pip install

andora:

malvi@pandora:~/workspace

== = test session starts
ython 3.8:6,

cachedir: .pytest cache
rootdir: /home/malvi/workspaces/pycharm/calc, configfile: pytest.ini
plugins: cov-2.10.1
collected 20 items

tests/test_calc.
tests/test_calc.
tests/test calc.

tests/test calc.
tests/test_calc.

tests/test_

tests/test_calc.
tests/test_calc.
tests/test calc.
tests/test calc.
tests/test calc.

tests/test calc.

tests/test_calc.
tests/test calc.
tests/test calc.

:test _add two_numbers
_add_three numbers
::test add many numbers
::test subtract two numbers
test_mul_two_numbers
itest_mul_many_numbers
numbers_float
"0_returns_inf
"0_raises_exception

::test _mul_by
::test avg correct average
test avg removes upper outliers
y::test avg removes lower outliers
i:test_avg uppper_threshold is included
i:test_avg lower_threshold is included
i:test_avg empty list

pytest-6.1.2, py-1.9.08, pluggy

/pycharm/calc
-r requirements/dev.txt

/workspaces/pycharm/calc [Tue Nov 10 13:42]

alvi/workspaces/pycharm/calc/.venv/bin/python

::test_avg manages_

:test_avg mana
:test_avg manages
::test avg manages

tests/test meteorites.py::test aver

empty list after outlier removal
empty list before outlier removal
zero_value lower outlier

zero value upper outlier

_mass

20 passed

[Tue Nov 10 13:41]

Activate the environment

Install all requirements

Run all tests

Run tests with PyCharm

Run/Debug Configurations

Add New Configuration
est

Letuce

Menu Run | Edit Configurations...

Pyramid server

fiiﬁ‘ Click the plus button and
& Docuils task select Python tests | pytest

If you want,
restrict pytest to the tests directory

Alternative: right-click the tests directory, and Run ‘pytest in tests’

Settings

Tools : Python Integrated Tools

If you don’t see

Project: mycalc Packaging

YLOUI Hel piee

> Build, Execution, Deployment Flle | SettlngS,
Tools | Python
Integrated Tools

Project Structure Package requirements file: | requirements.txt pyteSt1 menu

Pipenv
> Languages & Frameworks)

v Tools Path to Pipenv executable:

Testing

Default test runner:

- Select pytest here

Docstring format: | reStructuredText
¥| Analyze Python code in docstrings

r external documentation for stdlib

External Documentation
Python Integrated Tools

Python Scientific

A Mo pytest runner

Click here

Cance

Requirements

The goal of the project is to write a class Calc that performs calculations: addition,
subtraction, multiplication, and division

* Addition and multiplication shall accept multiple arguments

 Division shall return a float value, and division by zero shall return the string "inf"
* Multiplication by zero must raise a ValueError exception

The class also provides a function to compute the average of an iterable like a list

* This function gets two optional upper and lower thresholds and should remove
from the computation the values that fall outside these boundaries

* For an empty sequence, the average is undefined and the function returns None

Requirements on multiplication and division are strange... it's just an example!

& Pure Python

B Dpjango

L :Eask

@ Google App Engine
Pyramid

B webz2pry

ifi Scientific

A Angular CL

& Angular]s

B| Bootstrap

@ HTMLS Boilerplate

&% React App

& React Native

New Project

Location: | fhome/malvifworkspaces/pycharm/mycalc

* Python Interpreter: New Pipenv environment
&) New environment using | Ig Pipenv
Base interpreter: fusr/bin/python3.8
Pipenv executable:
Existing interpreter
<No interpreter=

Create a main.py welcome script

Cancel

Pipfile should look like this one

i Pipfile

Start a new project
Use pip
Set pytest for tests

Add a tests directory

Your first test

e Create file tests/test_calc.py with the following content:

pytest discovers tests

Every test * function
IS a test

A test falls if it raises
an exception

Have you noted the errors? They are expected! We are going to fix them now

Let’s fix the failing test

Create file calc/calc.py

| know, the class is very minimal, it's not implementing the requirements

TDD: The requirements are used to write the tests, the tests are used to write the code.

Our first test still fails

Class Calc has no
add method

t calc.py

Y
Calc:
add(

AILURES

~ il il

_add_two_numbers

_add_two

_numbers()

kes 1 positional

argument but 3

short test summary info
_add_two_numbers -

TypeError:

1 failed in @.

5t_add_two_

dd_two_numbers

ertionError

short test

A ETEY
_add_two_n

umbers

1l failed in

- fhome/malvi/workspaces/pycharm/mycale/.venv/bin/python

d 1 item

ydd_two_numbers P

Stop here! All tests are satisfied
Do you want more? Give me more tests!

Obviously, here we are exaggerating,
but it’s just to give the idea

Who said more tests?

* Requirement: Addition and multiplication shall accept
multiple arguments

— Not only two, but possibly three, four, and so on
* Let’s add a test to tests/test_calc.py

test_add_three_numbers()
c = Calc()

Minimum code fix the failing test: add a third argument

Error: add() missing 1 required positional argument: 'c'

Oops! We just broke test 1

That’s good! We call it a regression test falil
We know that the problem was introduced in the last change

What if test 1 was not here to help?

Wa_num t"?' rg -
Be_numbers

iled in

ort test summary
YP

info

Actually, also test 2 is failing

Focus on one failing test
at time

Previously passing tests
should get priority
(they are easier to fix;
just unroll the last change)

Let’s add a third argument
with default value

L Test 1 passes

Test 2 falls: fix with return 15?
Would broke test 1, so no

_add_two_numbers

_add_three_numbers

TDD Is slow

° Yes, ItiIs
 You would do must faster without tests

* Until something will break

- Time to search for the bug
- How long was the bug there?
- How do you find it? You have to write examples

== L Those examples are tests!!!
‘ - Wasn't better tgiyyrite them once and for all?

We are not done

Requirement: Addition and multiplication shall accept multiple arguments
- Not only two, but possibly three, four, and so on

We cannot test infinitely many cases

We should test at least boundary cases

- What are the corner-cases of our algorithm?

Example: input from 1 to 100

- You may not need to test 42
— But you should test 1 and 100
- And you should also test for errors, when 0 or 101 are used

test_add_many_numbers():

Calc().add(*

In TDD a solution is not correct when it is beautiful, when it is smart,
or when it uses the latest feature of the language

TDD wants your code to pass the tests

TDD doesn’t cover all the needs of your software project:
your code might be ugly, convoluted, and slow

Subtraction

 We need a function to implement subtraction

- Multiple arguments are not mentioned
- We limit to two operands
- We write a test from the requirement

The fix is simple
We don’t really need to do all the passages we did for addition

We did all those steps to better understand the approach

Multiplication

e Similar to addition

test_multiply_two_numbers() def test_multiply_two_

Cale().mul() == assert Calc().mul(é,
AttributeError: 'Ca

AttribuvteError

est_subtract_two_
est_multiply_two_

test_multiply_many_numbers():

Calc().mul(=

A non-failing new test... should we keep it?
Well, it tests for multiple arguments, so in this case yes, let’s keep it

Usually, new tests must be failing. If not, ask yourself if the new test makes sense

Refactoring

 |f all tests pass, we can refactor

Do not refactor without tests

- How can you be confidend that you are not breaking
something?

— Better to write tests before refactoring
— Better with TDD:
no tests, no code

Always tests boundary cases

ree_numbers

f_numbers

subtract_two_numbers

t_multiply_two_numbers

stest_multiply_many_numbers PA

test_multiply_no_numbers PA

Division

 There must be a division function returing a float

test_division_two_numbers()

(1.div (—

:test_multiply_two_numbers F
est_multiply_many_numbers

:test_multiply_no_numbers

:test_division_two_numbers

Requirement: division by zero shall return the string "inf"

Very strange, but it is just an example

test_division_by_zero_returns_inf(): (ct_division_by_zero_returns_inf():

(5, ¥) — “inf®

Testing exceptions

* Requirement: multiplication by zero must raise a
ValueError exception

* We can use pytest.raises to assert exception raising

test_multiplication_by_zero_raises_exception() def test_multiplication_by_zero_raises_exception():

wtest.raisesl) with pytest.raises(ValueError):
Cale() .mul(3, 8)

Failed: DID NDT RAISE <class 'ValueError's

A more complex set of

requirements

* A function to compute the average of an iterable

* This function shall accept two optional upper and lower thresholds to remove outliers

* Let's break to simple tests

The function accepts an iterable and computes the average, eg. avg([2, 5, 12, 98]) == 29.25

The function accepts an optional upper threshold, eg. avg([2, 5, 12, 98], ut=90) == avg([2, 5, 12])
The function accepts an optional lower threshold, eg. avg([2, 5, 12, 98], It=10) == avg([12, 98])
The upper threshold stays in, eg. avg([2, 5, 12, 98], ut=98) == avg([2, 5, 12, 98])

The lower threshold stays in, eg. avg([2, 5, 12, 98], It=5) == avg([5, 12, 98])

The function works with an empty list, eg. avg([]) == None

The function works if the list is empty after outlier removal, eg. avg([12, 98], It=15, ut=90) == None
The function outlier removal works if the list is empty, eg. avg([], [t=15, ut=90) == None

]

_putlier_removal():

1t = min(it)

All test pass. Refactoring time!

test_sz

Tests from bug reports

* Abug is an example of a missing test in your suite

What if It is 07

Same problem for ut

Note that we are refactoring... luckily we have regression tests!

Last thing, but not least, let’s try to run tests with coverage analysis

Lines of code that are not covered by tests are either unreachable or witness missing tests

Summing up

1) Test first, code later

2)Add the bare minimum amount of code you need to pass the tests
3) You shouldn’t have more than one failing test at a time

4)Write code that passes the tests. Then refactor it.

5) A test should fail the first time you run it. If it doesn’t, ask yourself
why you are adding it.

6) Never refactor without tests

)
C
O

=
0
Q
-

@y

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

