

Secure Software Design
Mario Alviano

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

From the Forward

● Insecure software is undermining our financial, healthcare, defense,
energy, and other critical infrastructure

● As our software becomes increasingly complex, and connected, the
difficulty of achieving application security increases exponentially

● We can no longer afford to tolerate relatively simple security problems
like those presented in this OWASP Top 10

● Although the original goal of the OWASP Top 10 project was simply to
raise awareness amongst developers and managers, it has become
the de facto application security standard

Application Security Risks

Every unexpected path represents a risk

OWASP Risk Rating

Try Hack Me

● A website I suggest to practice pentesting
● Let’s use the OWASP Top 10 room to practice

https://tryhackme.com/room/owasptop10

https://tryhackme.com/room/owasptop10

A1 – Injection

Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted data
is sent to an interpreter as part of a command or query. The attacker’s hostile data can trick
the interpreter into executing unintended commands or accessing data without proper
authorization.

● Let’s check it on the OWASP Top 10
● Also have a look at the description and examples in

– CWE-77: Command Injection
– CWE-89: SQL Injection
– https://www.owasp.org/index.php/SQL_Injection
– https://www.owasp.org/index.php/Blind_SQL_Injection

https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection

A2 – Broken Authentication

Application functions related to authentication and session management
are often implemented incorrectly, allowing attackers to compromise
passwords, keys, or session tokens, or to exploit other implementation
flaws to assume other users’ identities temporarily or permanently.

● Let’s check it on the OWASP Top 10
● Also have a look at the description and examples in

– CWE-287: Improper Authentication
– CWE-384: Session Fixation

A3 – Sensitive Data Exposure

Many web applications and APIs do not properly protect sensitive data, such as
financial, healthcare, and PII. Attackers may steal or modify such weakly protected
data to conduct credit card fraud, identity theft, or other crimes. Sensitive data
may be compromised without extra protection, such as encryption at rest or in
transit, and requires special precautions when exchanged with the browser.

● Let’s check it on the OWASP Top 10
● Also have a look at the description and examples in

– CWE-312: Cleartext Storage of Sensitive Information
– CWE-319: Cleartext Transmission of Sensitive Information

A4 – External Entities (XXE)

Many older or poorly configured XML processors evaluate external entity
references within XML documents. External entities can be used to disclose
internal files using the file URI handler, internal file shares, internal port
scanning, remote code execution, and denial of service attacks.

● Let’s check it on the OWASP Top 10
● Also have a look at the description and examples in

– https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing
– https://en.wikipedia.org/wiki/Billion_laughs_attack

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing
https://en.wikipedia.org/wiki/Billion_laughs_attack

A5 – Broken Access Control

Restrictions on what authenticated users are allowed to do are often not properly
enforced. Attackers can exploit these flaws to access unauthorized functionality
and/or data, such as access other users' accounts, view sensitive files, modify
other users’ data, change access rights, etc.

● Let’s check it on the OWASP Top 10
● Also have a look at the description and examples in

– https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
– CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

A6 – Security Misconfiguration

Security misconfiguration is the most commonly seen issue. This is
commonly a result of insecure default configurations, incomplete or ad
hoc configurations, open cloud storage, misconfigured HTTP headers,
and verbose error messages containing sensitive information. Not only
must all operating systems, frameworks, libraries, and applications be
securely configured, but they must be patched and upgraded in a
timely fashion.

● Let’s check it on the OWASP Top 10

A7 – Cross-Site Scripting (XSS)

XSS flaws occur whenever an application includes untrusted data in a new web
page without proper validation or escaping, or updates an existing web page
with user-supplied data using a browser API that can create HTML or
JavaScript. XSS allows attackers to execute scripts in the victim’s browser which
can hijack user sessions, deface web sites, or redirect the user to malicious
sites.

● Let’s check it on the OWASP Top 10
● Also have a look at the description and examples in

– CWE-79: Improper neutralization of user supplied input

A8 – Insecure Deserialization

Insecure deserialization often leads to remote code
execution. Even if deserialization flaws do not result in remote
code execution, they can be used to perform attacks,
including replay attacks, injection attacks, and privilege
escalation attacks.

A9 – Using Components with
Known Vulnerabilities
Components, such as libraries, frameworks, and other
software modules, run with the same privileges as the
application. If a vulnerable component is exploited, such an
attack can facilitate serious data loss or server takeover.
Applications and APIs using components with known
vulnerabilities may undermine application defenses and
enable various attacks and impacts.

A10 – Insufficient Logging &
Monitoring
Insufficient logging and monitoring, coupled with missing or
ineffective integration with incident response, allows attackers
to further attack systems, maintain persistence, pivot to more
systems, and tamper, extract, or destroy data. Most breach
studies show time to detect a breach is over 200 days,
typically detected by external parties rather than internal
processes or monitoring.

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

