

Handling failures securely

Mario Alviano

Secure Software Design

Consider failures, or fail

● The real world is not perfect
● Nothing really goes as

expected
● People may deviate from

ordinary paths
● Please, consider failure

when designing a system

Failure represented by exceptions

● Often stack traces are
shown to the end user

● Very bad!
● Why do this happen?

● Exceptions are often used to represent failures
● They disrupt the normal flow of a program
● Information on why and where the execution flow was disrupt

– Why: the message
– Where: the stack trace

● Several leaks
– Java is used, let’s check for Java vulnerabilities
– SQL is used, data a stored in a RDBLP, let’s try SQLi
– Tomcat is used
– Hibernate is used

Reasons to raise exceptions

● Business exceptions prevent illegal
actions from a domain perspective
– withdrawing money from a bank account with

insufficient funds
– adding items to a paid order

● Technical exceptions aren’t concerned
about domain rules
– adding items to an order without enough

memory allocated
● Better to separate business and technical

exceptions
– business exceptions are part of the domain

Mixing business and
technical exceptions

is bad

An exception is raised
if no matching account

is found (business
exception) or

if a database error occurs
(technical exception)

Note that findFirst()
is also a

not-very-good choice here!

Following the previous code,
how do we distinguish the two
exceptional cases if both are

represented by IllegalStateException?

We can only rely on the message

A very fragile design

The message can change

A new IllegalStateException may be added and escape the catch block

Separate business exceptions and
technical exceptions

● All business exceptions
extends AccountException

● Capture specific exceptions
● Handle AccountException by

raising a technical exception
(to be handled by a global
exception handler)

The type of the exception
already clarifies the reason

of the failure

No need for a message

Technical exceptions stay
separate from

business exceptions

Handle known business exceptions

Unknown business exceptions
should not exist, but just in case

raise a technical exception

Be aware that this way your
application may still leak

sensitive data

Is the customer name a sensible data?

Is it sensible in another context?

Because at that point you really don’t know
which contexts this information will traverse

You may end up logging private data that
should not be accessed by developers,

who usually have to access log files

Never include sensitive data in exceptions!

Failure is not exceptional

● Failures are a natural and expected outcome of anything we do
● Does it make sense to model them as exceptions?
● A method usually has multiple outcomes

– It can succeed
– It can fail

● If failures are designed as unexceptional outcomes, many problems are
solved
– no ambiguity between domain and technical exceptions
– impossible to inadvertently leak sensitive information

Example

Money transfer
between

bank accounts

Use exceptions to control flow of a program is odd

An insufficient balance is not exceptional

Define Result objects for your methods

Their design is part of the business model

Some advatantages of designing failures as expected and unexceptional outcomes

Designing for availability

● You don’t want your application or service to be
unavailable

● Yet, you cannot pretend to serve all request
● There is always a physical limit
● Better to inform the user that the system is busy than to let

they wait forever
● Implement queues

● Start with closed circuit
– All requests are processed
– Count failures

● Open the circuit when too many
failures
– Discard requests

● After some time, half-open the circuit
– Process some requests
– If they succeed, close the circuit
– Otherwise, open the circuit

Circuit breakers

Handling bad data

● Data is often dirty
– Spaces here and there
– Missing characters
– Special characters

● Don’t try to repair the input
– Injection flows
– Second-order attacks (the vulnerability arises on another system,

like the log viewer)

Remove
<

and
>

Do not echo input verbatim,
never, not even in log files!

Google Form

● https://forms.gle/VHn7SuPw5J8W6ryT8

https://forms.gle/VHn7SuPw5J8W6ryT8

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

