

Reducing complexity of state

Mario Alviano

Secure Software Design

Introduction

● Managing the mutable state of entities is difficult
● State transitions may be complex
● We need secure patterns for state changes

– Partially immutable entities
– Entity state objects (single-thread)
– Entity snapshot (multi-thread)
– Entity relay (decomposition)

OK for single-thread

Race condition for multi-thread

Balance is inadvertently below 0
for a TOCTOU vulnerability

It may be worse:
1, 2, 3, 5, 4, 6

gives a wrong final balance

Goodbye bank status!

Partially immutable entities

● Anything not expected to change should be immutable
● In class Order, field custid must not change

– Does it make sense to transfer the basket of a customer to another
customer?

– If it doesn’t, why leaving such a possibility?
● Security by design

– Make the entity partially immutable
– Field custid must be immutable

Field custid is final, it cannot change
(if CustomerID is immutabile)

In this case we can also remove the getter and
make custid public

The following code results into
a compilation error

Entity state objects

How to represent
such state changes?

Naive solution:
use many if

Incorrect encoding

The state is not checked
in the entity

Very likely, some checks will be
forgotten in some usage of

the entity

Incorrect encoding

The state is implicit

Likely, if statements were added
on the base of specific cases

The state of the entity is
very important:

it must be carefully designed

In code, this fact translates
into an ad-hoc class devoted

to the state of the entity

The state is explicitly represented

We can now also define unit tests
for the state of the entity

The entity calls methods of the state class

Illegal calls are identified
(and logged)

Multi-thread environments

● Quite common (for example, web services)
● OK to share immutable objects (privitive domains)
● Sharing mutable objects is more subtle

– Several methods have to be synchronized
– Deadlock problems may arise

● Entity snapshots
– The entity is not “represented” by mutable classes
– We actually use (immutable) snapshots of the entity

Snapshot idea

A friend that you don’t
see since a long time

You see their
pictures on FB

Your friend is an entity

Each picture is a
representation of your

friend in a given
instant in time

An entity snapshot is encoded
by an immutable object

Usually, the snapshot is built from
data stored in a database

Many business logic is in the snapshot

State changes must be managed by
another class (it violetes encapsulation)

Synchronization is required only
for “taking” the snapshot

Entity relay

● Pattern to handle entities with many states
● The idea is to identify life phases of the domain entity
● Every phase is then represented in code by a new entity
● Phase changes imply a change of the entity

Entity with low number of states:
directly manageable

Entity with high number of states:
better to group states by phases

A person seen as an entity,
with several states from birth to death

A person seen as a chain of entities,
every entity corresponding to one life phase,

with its own states

If there are points of no return,
there likely is a life phase of the entity

An order is preliminary until it is paid,
at that point it is definitive

If the shipment is rejected
by the customer,
the order enters

a third phase of its life

Let’s represent the order with 3 entities

Every entity has a manageable
number of states

The 3 phases are sorted somehow

Only one transition point from
one phase to the next phase

(it’s also OK with
2 or 3 transition points)

Google Form

● https://forms.gle/TfoNLvUQ7QzTYPhq5

https://forms.gle/TfoNLvUQ7QzTYPhq5

Exercise

Riprendiamo il dominio della concessionaria.

Vogliamo gestire i veicoli come delle entità in modo da consentire la modifica di tutti i loro campi. Come identifichiamo i veicoli?

Vogliamo consentire ulteriori operazioni dal menù:
● modifica di veicoli
● rimozione di veicoli
● lista di case produttrici di auto
● lista di case produttrici di moto
● lista di auto di una data casa produttrice
● lista di moto di una data casa produttrice

Fine della lezione

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

