

Code constructs promoting security

Mario Alviano

Secure Software Design

This lesson content

● Strategies to solve security issues in code
– Immutability, to solve integrity and availability issues
– Fail fast, to solve irregular input and state issues
– Validation, to ensure that input conform to some specification

● It’s time to use these stategies in our code!
● We must also recognize security issues in legacy code

Immutability

● An object is mutable if it allows for state changes
● An object is immutable if it inhibits state changes

– Safely share them among threads
– High data availability => prevent DoS attacks

● Unless required, do not make an object mutable!
– Dangerous
– Expensive

Example. Online shop

● Each customer is associated with a score based on the
previous purchases

● Customers with high score can benefit delayed payment (as
an alternative to immediate payment)

● Scores are computed while orders are added to the system
● Suddenly, there are problems during an advertising campaign

– Many long waiting lines and many orders timeout
– Payment methods are not consistent with the shop policy

The financial department reports several delayed payments
for many customers with low score

Several problems!

Attributes have to be initialized with setter
methods: the state can change and it isn’t clear

when the object is actually initialized

All methods are synchronized:
threads compete the access to the object,

and stuck!

Observed issue Category Probable cause

Long waiting lines and poor
efficiency

Availability The system cannot relaiably access to
customer data and timeouts

Orders timeout at checkout Availability The system cannot timely obtain the data
required to process orders

Inconsistent payment
methods

Integrity Customer scores are irregularly changed

Categorizing the observed issues helps to understand
how the issues actually depend on

the implementation of class Customer

Availability issues

Due to synchronization

This app does many reads and few writes

To remove synchronized is OK for reads,
but not for writes

Nontrivial solution: ReadWriteLock

Simple solution

Make the object immutable

Attributes are initialized on
construction and cannot change

This way the object can be shared
among several threads

We still have the issue on writes:
we need the identity snapshots,

a concept we will see later

Integrity issues

1) CreditScore is initializied by setter: we cannot control changes
2) Method setCreditScore() doesn’t copy its argument:
 the object may be shared and externally modified
3) Method getCreditScore() inadvertently releases a reference to CreditScore:
 its value can be externally modified

synchronized is useless if
the object can be

externally modified!

CreditScore should be immutable:
the calculation must be done by Customer

or by another higher entity

If CreditScore is immutable, it can be
shared among several threads

The method assigning CreditScore
to Customer must be synchronized

(or use another mechanism like
entity snapshots)

CreditScore computes customer scores:
it needs access to customer data

The logic of Customer and CreditScore
is mutually dependent:

very bad!

Fail fast by contracts

Invalid data are blocked
before they can create

an invalid object

This is another strategy
promoting

secure software coding

The idea is that every class
defines a contract:

it guarantees some invariants

Other classes can assume
that all invariants hold

Contract example

● You call a plumber to fix a sink in your bathroom
● The plumber asks you to not lock the door of your bathroom and to

close the water stop valve
– These are the prerequisite of the job (or of the contract)
– If they are not satisfied, better to not do the job (fail fast)

● The plumber guarantees that after the job the sink will properly work
– This is the postcondition of the contract

● Classes should define similar contracts

Class in a system for cat breeders

Cat names are put in a queue as soon as they come to mind

When a cat is born, a name from the queue is extracted

Method Required
preconditions

Guaranteed
postconditions

nextCatName list is nonempty size doesn’t change

The returned name
contains ‘s’

dequeueCatName list is nonempty size decreases by 1

queueCatName name is not null and
contains at least an ‘s’

name must not be
already in the list

size increases by 1

The contract clarifies that the called must provide
a name not already in the list

The contract is represented in code

Methods start with validity checks:
if prerequisites are not satisfied,

fail fast by raising exceptions

Use NullPointerException if null
is used where it is not expected

Use IllegalArgumentException
for other checks (unless there is a more

specific Java exception)

Method Required
preconditions

Guaranteed
postconditions

nextCatName list is nonempty size doesn’t change

The returned name
contains ‘s’

dequeueCatName list is nonempty size decreases by 1

queueCatName name is not null and
contains at least an ‘s’

name must not be
already in the list

size increases by 1

Validate of Apache’s Commons Lang

Several methods useful for validation: notNull, isTrue, matchesPattern,
exclusiveBetween, inclusiveBetween

Use import static to directly access all static methods of Validate
(note that the book has a few typos in code, it misses static)

https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/Validate.html

Caution! Do not use invalid data in exception messages.
It opens doors to security issues: injections and sensitive data leakage, to start!

https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/Validate.html

When to use contracts

● It is advisable to define contracts and to verify prerequisites of
public methods

● For methods with package visibility it depends
– yes if the package is big and the methods widely used
– no if it is part of a small utility class

● Private methods do not need contracts (and usually use
assentions)

● Protected methods, well, you should not use them

Invariants in constructor

Avoid empty constructors
(unless there are clear default values)

Name and gender of the cat are
required: we give them in the

constructor and we verify that they
are not null

Note that notNull returns a reference
to its argument

(if it doesn’t raise an exception)

matchesPattern() is voidThe same validation of name is done in
Cat() and CatNameList(): it would be better

to define a CatName class

Fail on invalid state

● validState() raises an
IllegalStateException if the
expression is false

● We don’t use isTrue()
because it’s dedicated to
arguments: isTrue() raises
IllegalArgumentException if
the expression is false

The method of CatNameList
to access the next name

The full class CatNameList

A few more lines of code,
but a clear contract

The code is safer

Invalid data are immediately stopped

The list cannot be in an invalid state

Validation

● OWASP stresses on the importance of input validation
● Input validation is contextual

– For the quantity of books in an order, 42 is valid, -1 is not valid
– For a temperature, -1 is valid
– <script>alert(42)</script> is usually invalid, but it is valid for a website to report security issues

● “Validate your input” is an advise helpful as “when driving, avoid accidents”
● We have to clarify the several kinds of validation and the order in which they have to

be done
– From the cheapest check, like the length
– To the most expensive, those involving the database

Types of validation
(to be done in this order)
● Origin

– Are data coming from a legitimate sender?
● Size

– Is the size reasonable?
● Lexical content

– Does it contain only admissible characters?
● Syntax

– Is the format correct?
● Semantic

– Do data make sense?

An input invalid due to its length
is identified with few resources

To not delegate to the database
simple and cheap checks

Check for data origin

● First thing to do
● Many attacks are asymmetric in favor of the attacker

– Sending malicious data is not so expensive for the attacker
● Prevent DoS and DDoS

– Check IP addresses
● For internal services, limits to a few known IPs
● Be aware of spooffing

– Ask for an access key to your API
● Assign unique keys to legitim users
● Asks to send back some token

Check for data size

● Try to understand what is a
reasonable size
– It depends from the context

● Avoid to process too huge data
● An ISBN is 10 characters

– Discard any other length
– Do not rely only on the

(subsequent) regular expression
– What happen if you receive 1

billion characters?

Check lexical content

● Verify that received characters
are those permitted

● Verify that the encoding is the
correct one

● An ISBN-10 contains only digits
and the letter X

● Usually also dashes and spaces
are accepted, but let’s simplify

● More complex input require a
lexical analyzer (lexer)

Check data syntax

● Check that the several
characters are in the correct
place

● Usually with a regex
– If the regex is unreadable,

prefer code
● In a ISBN-10 letter X is

permitted only in the last
position

Lexical content and syntax are
often checked together

Check data semantics

● Determine if data are consistent with respect to the state of
the system
– Do the product in the basket exist?
– Is the payment method permitted?

● These checks are part of the model
– If data are invalid, raise an IllegalStateException

Secure by design

An ISBN immutable class,
validating data on construction

We can use this class without
further worries on the validity

of the ISBN code

Define such small bricks
to promote security

We call them domain primitives

Reading exercises

● Understand the notion of immutability

https://codesjava.com/immutable-class-in-java

http://web.mit.edu/6.031/www/fa18/classes/08-immutability/

● Understand the notions of specification and exception

http://web.mit.edu/6.031/www/fa18/classes/06-specifications/

https://codesjava.com/immutable-class-in-java
http://web.mit.edu/6.031/www/fa18/classes/08-immutability/
http://web.mit.edu/6.031/www/fa18/classes/06-specifications/

Fine della lezione

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

