
Low level attacks
Assembly (part 2)

Mario Alviano

University of Calabria, Italy

A.Y. 2019/2020

1 / 13



Stack instructions

push operand

pop address/register

Used for local variables
Used to create cached copies
Used for passing arguments to procedures

2 / 13



Load effective address

Use lea register, memory to load a memory address
into a register

Alert!

The use of square brackets in this case does not dereference!

Example

lea edi, [ebx+4*esi]

lea eax, [var]

3 / 13



Loops

Conditional jumps can be used for implementing loops

Alternatively, loop label can be used
It decrements ECX and jumps to label if not zero

Example

Try loops.asm

4 / 13



Loops

Conditional jumps can be used for implementing loops

Alternatively, loop label can be used
It decrements ECX and jumps to label if not zero

Example

Try loops.asm

4 / 13



Subroutines

Subroutines are identified by labels
Subroutines are called by call label

Pushes EIP into the stack, and jumps to label

Each subroutine terminates with ret
Pops an address from the stack, and jumps to it

Example

Try subroutine.asm

5 / 13



Calling convention

How to share subroutines?
We must agree on some strategy to pass paramenters
Several conventions do exist
We will consider the C/C++ convention
Essentially, use the stack!

Two sets of rules

1 The first set is for the caller
2 The second set is for the callee

6 / 13



Calling convention

How to share subroutines?
We must agree on some strategy to pass paramenters
Several conventions do exist
We will consider the C/C++ convention
Essentially, use the stack!

Two sets of rules

1 The first set is for the caller
2 The second set is for the callee

6 / 13



Caller rules

1 Push caller-saved registers: EAX, ECX, EDX
2 Push arguments in reverse order (allow varadics)
3 Use the call instruction (push return address, and jump)
4 Remove parameters from the stack (add their size to ESP)
5 Restore caller-saved registers (pop them from the stack)

7 / 13



Callee rules (1)

Subroutine Prologue
1 Push EBP, and then copy ESP into EBP

All parameters are in EBP-offset
2 Allocate local variables in the stack

Subtract their size from ESP
All local variables are in EBP+offset

3 Push callee-saved registers: EBX, EDI, ESI 8 / 13



Callee rules (2)

Subroutine Epilogue
1 Leave the return value in EAX
2 Restore callee-saved registers (pop them)
3 Deallocate local variables

Add their size to ESP
Better alternative, copy EBP into ESP

4 Restore the previous EBP (pop it)
5 Return to the caller by executing ret

9 / 13



Callee rules (3)

Instruction leave is equivalent to

mov esp, ebp

pop ebp

It is a shortcut for 3 and 4 in the previous slide.

Example

Try convention.asm

10 / 13



Integration with the C/C++ libraries

Declare used functions: extern printf

The entry point is the function main

Use everything we just learned about assembly!

Example

Write and read
Use printf to write in STDOUT
Use scanf to read from STDIN
Let’s have a look at printf.asm and scanf.asm

11 / 13



Exercises

Read a sequence of positive integers terminated by -1, and
1 Print the maximum number of the sequence
2 Print the sum of all numbers
3 Print the sum of all even numbers
4 Print the size of the largest subsequence of even numbers

Read a sequence of N integers (N read from STDIN), and
5 Print 1 if the sequence is a palindrome, otherwise print 0
6 Print the most frequent number
7 Print the less frequent number

12 / 13



END OF THE
LECTURE

13 / 13


