Low level attacks

Format string vulnerabilities
(part 2)

Mario Alviano

University of Calabria, ltaly

A.Y. 2019/2020

1/12

Many many questions!

m How to read specific memory locations?

m How to write specific memory locations?
m How to leak sensitive memory addresses?
m How to exploit format strings?

We are going to answer all these questions!

2/12

Read arbitrary addresses

m We can use %$s
m The address must be in the stack

Let’s reach the format string!

<address><stackpop><read-code>

address: the address we want to read

stackpop: format parameters such as %u or $8x to reach
<address>

read-code: format parameter %s

3/12

Read arbitrary addresses

B Tryprintf_s.c

m Find the right stackpop with
AAAABBBB| %8x...%8x|%08x|
(see printf_s_stackpop.py)

m You have the right stackpop when the printed string ends
with 141414141 |

m Possibly, prepend 1, 2 or 3 characters to align memory
m Use gdb to find the address of unlinked
m Replace AAAA with the address

m Replace |%08x | with | $s|
(see printf_s_build.py)

4/12

Write to arbitrary memory

m We can use %n
m The address must be in the stack
m Let’s reach the format string!

(<junk><address>) 4<stackpop><write—code>

B junk: four dummy bytes (eg. JUNK)
B address: the address we want to write

®m stackpop: format parameters such as $8x to reach the
format string (%u is problematic; why?)

B write-code: increase counter with $nx (where n > 8)
and write with %n

5/12

Write to arbitrary memory

B Try printf_write_to_address.c

m Find the right stackpop with
AAAABBBBJUNKCCCCJUNKCCCCJUNKCCCC | $8x. . .%8x|%08x]|
(see printf_write_stackpop.py)

m Use gdb to find the address of target

m Replace the first part of the format string

m The four addresses point to the four bytes of target
m Replace |%08x| with the write-code

B Seeprintf_write_build.py
m Note that the padding function has been improved
(we are going to print hexadecimal numbers)

6/12

Rewrite the return address

m Try printf_retaddr.c

m Use printf_retaddr_stackpop.py to find the right
stackpop

m Use gdb to find the address of the unlinked function

m Use gdb to find the address of the return address

m Use printf_retaddr_build.py to inject the address
run "$(./printf_retaddr_build.py)"

Note

m The address of the return address will be different if you
run the program normally (out of gdb)

m The address has to be brute forced

7/12

Find the address of the format string

m Can we find the address of the format string?

m This would allow to compute the address of the return
address
B Try printf_retaddr_find.py

When you see the format string printed back, you have the
right address! (it should be at 7 in the example)

You also know the relative position of the format string
(where you see 141414141 |; it should be at 11 in the
example)

And you know the relative position of the return address (it
should be at 6 in the example)

m Either use gdb to find it, or
B Recognize itin the output of printf_retaddr_find.py

mletstryll-4"@A-BH)
B (gdb) p/x OxADDR1 - 4x (OFFSET2 - OFFSET3)

8/12

Find the address of the format string

Use printf_retaddr_build.py without gdb

¢ python -c "import os; os.system(''‘'a.out '~ ./printf_retaddr_build.py "' ''')"

This is noncompliant function:
JUNK$86IUNKHEEIUNKERGGIUNKRGE | T7

4b4e554a

This is unlinked function.

9/12

How a format string exploit works

m Essentially, a combination of what we have seen
m We have the address of the return address

m We have the address of the format string
m We can inject a shellcode

m The shellcode will be at the end of the format string
m The return address will jump to the shellcode

m We can cast a return-to-libc attack

m The address of system will replace the return address
m The string /bin/sh will be at the end of the format string
m The address of this string will follow the return address

Let’s see the first attack; the second is similar.

10/12

Shellcode injection

m Let'stry printf_shellcode_find.py
m First step is to find the right addresses

m Note that the shellcode has been added with a proper nop
sled

m Now open printf_shellcode_build.py

m We have to rewrite the return address to hit the nop sled

m We put it at the end of the format string

m In the write-code we specify the address of the nop sled;
ie. address of the format string + size of the format string
up to the write-code + something

Run the exploit

m Change the owner of the executable to root
m Set the SUID bit
m Give in input our casted format string

11/12

E END OF THE

@ . LECTURE

25 %

QUESTIONS

11111

