
Low level attacks
Format string vulnerabilities

(part 2)

Mario Alviano

University of Calabria, Italy

A.Y. 2019/2020

1 / 12

Many many questions!

How to read specific memory locations?
How to write specific memory locations?
How to leak sensitive memory addresses?
How to exploit format strings?

We are going to answer all these questions!

2 / 12

Read arbitrary addresses (1)

We can use %s

The address must be in the stack
Let’s reach the format string!

<address><stackpop><read-code>

address: the address we want to read
stackpop: format parameters such as %u or %8x to reach
<address>

read-code: format parameter %s

3 / 12

Read arbitrary addresses (2)

Try printf_s.c
Find the right stackpop with
AAAABBBB|%8x...%8x|%08x|
(see printf_s_stackpop.py)
You have the right stackpop when the printed string ends
with |41414141|

Possibly, prepend 1, 2 or 3 characters to align memory
Use gdb to find the address of unlinked
Replace AAAA with the address
Replace |%08x| with |%s|
(see printf_s_build.py)

4 / 12

Write to arbitrary memory (1)

We can use %n

The address must be in the stack
Let’s reach the format string!

(<junk><address>)4<stackpop><write-code>

junk: four dummy bytes (eg. JUNK)
address: the address we want to write
stackpop: format parameters such as %8x to reach the
format string (%u is problematic; why?)
write-code: increase counter with %nx (where n ≥ 8)
and write with %n

5 / 12

Write to arbitrary memory (2)

Try printf_write_to_address.c
Find the right stackpop with
AAAABBBBJUNKCCCCJUNKCCCCJUNKCCCC|%8x...%8x|%08x|

(see printf_write_stackpop.py)
Use gdb to find the address of target
Replace the first part of the format string

The four addresses point to the four bytes of target
Replace |%08x| with the write-code

See printf_write_build.py
Note that the padding function has been improved
(we are going to print hexadecimal numbers)

6 / 12

Rewrite the return address

Try printf_retaddr.c
Use printf_retaddr_stackpop.py to find the right
stackpop
Use gdb to find the address of the unlinked function
Use gdb to find the address of the return address
Use printf_retaddr_build.py to inject the address

run "$(./printf_retaddr_build.py)"

Note

The address of the return address will be different if you
run the program normally (out of gdb)
The address has to be brute forced

7 / 12

Find the address of the format string (1)

Can we find the address of the format string?
This would allow to compute the address of the return
address
Try printf_retaddr_find.py

1 When you see the format string printed back, you have the
right address! (it should be at 7 in the example)

2 You also know the relative position of the format string
(where you see |41414141|; it should be at 11 in the
example)

3 And you know the relative position of the return address (it
should be at 6 in the example)

Either use gdb to find it, or
Recognize it in the output of printf_retaddr_find.py

Let’s try 1 - 4*(2 - 3)
(gdb) p/x 0xADDR1 - 4*(OFFSET2 - OFFSET3)

8 / 12

Find the address of the format string (2)

Use printf_retaddr_build.py without gdb

9 / 12

How a format string exploit works

Essentially, a combination of what we have seen
We have the address of the return address
We have the address of the format string
We can inject a shellcode

The shellcode will be at the end of the format string
The return address will jump to the shellcode

We can cast a return-to-libc attack
The address of system will replace the return address
The string /bin/sh will be at the end of the format string
The address of this string will follow the return address

Let’s see the first attack; the second is similar.

10 / 12

Shellcode injection

Let’s try printf_shellcode_find.py
First step is to find the right addresses
Note that the shellcode has been added with a proper nop
sled
Now open printf_shellcode_build.py

We have to rewrite the return address to hit the nop sled
We put it at the end of the format string
In the write-code we specify the address of the nop sled;
ie. address of the format string + size of the format string
up to the write-code + something

Run the exploit

Change the owner of the executable to root

Set the SUID bit
Give in input our casted format string

11 / 12

END OF THE
LECTURE

12 / 12

