
Low level attacks
Shellcode (part 1)

Mario Alviano

University of Calabria, Italy

A.Y. 2019/2020

1 / 12

Spawn a shell in C

Try shell.c (on a old machine)
Now modify the owner to root, and set the SUID bit

$ sudo chown root a.out
$ sudo chmod +s a.out

Execute the binary again... and you are root!

What all this means

Processes are associated with two user ids
Real UID: who started the process
Effective UID: for who the process acts

Similarly, there are real and effective group ids
If SUID is set, effective UID is set to the user owning the file
If SGID is set, effective GID is set to the group owning the
file
exec* functions start new processes... acting for the
effective user and group!

2 / 12

Our first shellcode

A shellcode is a set of machine instructions
Essentially, instructions spawning a shell
Try shellcode.c

Problems we have to face

Inject our shellcode in a vulnerable buffer
Jump to the first instruction of our shellcode

3 / 12

Shellcode injection

Try victim.c
How to inject our shellcode?

The NOP Method
<NOPs (0x90)> <shellcode> <padding> <saved return address>

We will jump in the NOP sled
The more NOPs, the more likely the injection
Follow the instructions in attack-victim.txt

4 / 12

Shellcode creation

Let’s create a simple shellcode
Essentially, the syscall exit(0)
Code it in assembly (see exit.asm)
Check the machine code with objdump

Now try exit_shellcode.c

5 / 12

Injectable shellcode

Can we remove zeros from our shellcode?
Two possibilities:

1 Replace assembly instructions
2 Add zeros at runtime

Replace assembly instruction

The first instruction can be replaced by
xor ebx, ebx

The second instruction can be replaced by
xor eax, eax
mov al, 1

Try exit2.asm and exit2_shellcode.c

6 / 12

Create a real shellcode (1)

Let’s look again shell.c

Possible implementation in assembly: shell.asm

Problems to face

We cannot use zeros
We should use relative addressing as much as possible
Can we get the address of filename?

7 / 12

Create a real shellcode (2)

Try shellcode.asm

Make text segment writable

Run ld with option -N

The call instruction pushes the address of filename
It is popped and stored into a register
All instructions can use relative addressing
Now get the machine code and try it with shellcode2.c

Better to extract the shellcode automatically
objdump -D -M intel shellcode.o | grep -P ":\t" |

sed ’s/.*:\t//’ | sed ’s/\s*\t.*$//’ |
sed ’s/ /\\x/g’ | sed ’s/\(.*\)/"\x\1"/’

8 / 12

Create a real shellcode (3)

Now check shellcode-with-p.asm

Exercise

Extract the shellcode and inject in shellcode2.c

9 / 12

Return to libc (ret2libc)

Alternative to code injection
Just inject return addresses (and arguments)

Example

Replace the return address with the address of system()
Leave 4 bytes (it is the return address of system())
Write the address of the string to execute
Follow the instructions in ret2libc.txt

Also check bypass-suid-drop-policy.txt

Return Oriented Programming (ROP)

Chain several calls to small instruction sets terminated by ret

10 / 12

Protection mechanisms

NX bit: mark each memory segment as writable xor
executable

Protect against code injection
Canaries: memory after buffers store special values

Protect against buffer overflows
Usually randomized, and difficult to predict

AAAS: ASCII Armored Address Space
Start addresses of subroutines with \x00
Limit calls in case of overflows

ASLR: Address Space Layout Randomization
Randomly change addresses at each execution

11 / 12

END OF THE
LECTURE

12 / 12

