Low level attacks

Shellcode (part 1)

Mario Alviano

University of Calabria, Italy

A.Y. 2019/2020

1/12

Spawn a shell in C

m Try shell.c (on aold machine)

m Now modify the owner to root, and set the SUID bit
$ sudo chown root a.out
$ sudo chmod +s a.out

m Execute the binary again... and you are root!

What all this means

m Processes are associated with two user ids

m Real UID: who started the process
m Effective UID: for who the process acts

m Similarly, there are real and effective group ids

m |f SUID is set, effective UID is set to the user owning the file

m |f SGID is set, effective GID is set to the group owning the
file

B execx+ functions start new processes... acting for the
effective user and group!

2/12

Our first shellcode

m A shellcode is a set of machine instructions
m Essentially, instructions spawning a shell
m Try shellcode.c

Problems we have to face

m Inject our shellcode in a vulnerable buffer
m Jump to the first instruction of our shellcode

3/12

Shellcode injection

B Try victim.c
m How to inject our shellcode?

The NOP Method

<NOPs (0x90)> <shellcode> <padding> <saved return address>

m We will jump in the NOP sled
m The more NOPs, the more likely the injection
m Follow the instructions in attack-victim.txt

4/12

Shellcode creation

m Let’s create a simple shellcode

m Essentially, the syscall exit (0)

m Code it in assembly (see exit.asm)

m Check the machine code with objdump

m Now try exit_shellcode.c

5/12

Injectable shellcode

m Can we remove zeros from our shellcode?
m Two possibilities:

Replace assembly instructions

Add zeros at runtime

Replace assembly instruction

m The first instruction can be replaced by
xXor ebx, ebx

m The second instruction can be replaced by
XO0r eax, eax
mov al, 1

B Try exit2.asmand exit2_shellcode.c

6/12

Create a real shellcode

m Let’s look again shell.c
m Possible implementation in assembly: shell.asm

Problems to face

m We cannot use zeros
m We should use relative addressing as much as possible
m Can we get the address of filename?

7/12

Create a real shellcode

Try shellcode.asm

Make text segment writable

Run 1d with option -N

m The call instruction pushes the address of filename

m |t is popped and stored into a register

m All instructions can use relative addressing

m Now get the machine code and try it with shellcode2.c

Better to extract the shellcode automatically

objdump -D -M intel shellcode.o | grep —-P ":\t" |
sed 's/.x:\t//’" | sed "s/\s*\t.xS$//" |
sed s/ /\\x/g’ | sed "s/\(.*\)/"\x\1"/’

8/12

Create a real shellcode

Now check shellcode-with—-p.asm

Exercise

Extract the shellcode and inject in shellcode2.c

9/12

Return to libc (ret2libc)

m Alternative to code injection
m Just inject return addresses (and arguments)

m Replace the return address with the address of system ()
m Leave 4 bytes (it is the return address of system ())

m Write the address of the string to execute
m Follow the instructions in ret21ibc. txt
m Also check bypass—suid-drop-policy.txt

Return Oriented Programming (ROP)

Chain several calls to small instruction sets terminated by ret

10/12

Protection mechanisms

m NX bit: mark each memory segment as writable xor
executable

m Protect against code injection
m Canaries: memory after buffers store special values

m Protect against buffer overflows
m Usually randomized, and difficult to predict

m AAAS: ASCII Armored Address Space

m Start addresses of subroutines with \x00
m Limit calls in case of overflows

m ASLR: Address Space Layout Randomization
m Randomly change addresses at each execution

11/12

E END OF THE

@ . LECTURE

25 %

QUESTIONS

11111

