
Low level attacks
Assembly (part 1)

Mario Alviano

University of Calabria, Italy

A.Y. 2016/2017

1 / 27

What is assembly language?

The CPU manages arithmetical, logical, and control
activities
The CPU follows machine language instructions
Machine language instructions are strings in {0,1}∗

Assembly is almost one-to-one to machine language

2 / 27

Why studying an assembly language?

To understand the following:
How programs interface with OS, processor, and BIOS
How data is represented in memory and other external
devices
How the processor accesses and executes instruction
How instructions access and process data
How a program accesses external devices

3 / 27

Setup

Download and install NASM

http://www.nasm.us/

Example

Try hello.asm
Assemble: nasm -f elf hello.asm

Link: ld -m elf_i386 -o hello hello.o

Run: ./hello

4 / 27

http://www.nasm.us/

Basic syntax

Three sections:
section .text

Actual code to be executed
Entry point declared by global _start

section .data
Global initialized variables

section .bss
Global unitialized variables

5 / 27

Memory segments

Text: assembly code
Data: global initialized
variables
BSS: global unitialized
variables
Heap: dynamically
allocated memory
Stack: local (and
temporary) memory

6 / 27

Statements (1)

Three types:
Executable instructions or instructions

Consist of an operation code and up to 3 arguments
Each instruction generates one machine language
instruction

Assembler directives or pseudo-ops
Used by the assembler
Do not generate machine language instructions

Macros
Text substitution

7 / 27

Statements (2)

Syntax

[label] mnemonic [operands] [;comment]

Examples of assembly language statements

Increment the value of variable count
inc count

Move value 0 into variable count
mov count, 0

Add the value stored in register ebx to the value stored in
register eax
add eax, ebx

8 / 27

Registers of an x86 processor

General registers
Data registers
Pointer registers
Index registers

Control registers
Segment registers

9 / 27

Data registers

Four 32-bit data registers
Used for arithmetic, logical and other operations
Can be also used as 16-bit or 8-bit data registers

AX, BX, CX, DX use bits 0-15

10 / 27

Pointer registers

Three 32-bit pointer registers
ESP: address of current top stack element
EBP: address of the stack frame

Can be also used as 16-bit pointer registers

11 / 27

Index registers

Two 32-bit index registers
Used for addressing memory
Can be also used as 16-bit pointer registers

12 / 27

Control registers
EIP: 32-bit instruction pointer register

Address of the next instruction to be executed
Can be also used as 16-bit IP register

EFLAGS: 32-bit flags register
Overflow Flag (OF): 1 if the last arith. op. overflowed
Direction Flag (DF): left-to-right (0) or right-to-left (1)
processing of strings
Interrupt Flag (IF): ignore (0) or process (1) external
interrupts
Trap Flag (TF): 1 for single-step execution (to debug)
Sign Flag (SF): 0 if the last arith. op. gave a positive result
Zero Flag (ZF): 1 if the last arith. op. gave 0
Auxiliary Carry Flag (AF): the carry from bit 3 to bit 4 in the
last arith. op.
Parity Flag (PF): parity bit of the last arith. op.
Carry Flag (CF): the carry of the high-order bit in the last
arith. op. 13 / 27

Segment registers

Registers pointing to starting addresses of memory segments
Code Segment (CS)
Data Segment (DS)
Stack Segment (SS)
Extra Segments (ES, FS, GS)

Example

Try 9starts.asm, focusing on the use of registers.

14 / 27

Linux system calls (1)

Put the system call number in the EAX register
Store arguments in EBX, ECX, EDX, ESI, EDI, EBP

If there are more than 6 arguments, store the address of
the first argument in EBX

Trigger the interrupt 0x80
The result is returned in EAX

15 / 27

Linux system calls (2)

All system calls are listed in...

/usr/include/asm/unistd.h

Example

Try read_number.asm, focusing on the system calls.

16 / 27

/usr/include/asm/unistd.h

Addressing modes (1)

Instructions may have up to 3 operands
First operand is generally the destination
Several addressing modes

Register addressing: use of register values
Immediate addressing: use of constants (with type
specifier)
Memory addressing: e.g., use of square brakets

17 / 27

Addressing modes (2)

mov destination, source

mov register, register

mov register, immediate

mov register, memory

mov memory, register

mov memory, immediate

Example

Try mov.asm, focusing on the different forms of the mov
instruction.

18 / 27

Variables

Use D* to declare initialized global variables
Use RES* to reserve space for unitialized global variables
* is one of the following:

B: byte
W: word
D: double word
Q: quadword
T: ten bytes

times can be used to repeat several times the same
initialization

e.g., starts times 9 db ’*’
allocates 9 bytes with value ’*********’

19 / 27

Constants

constant_name equ expression
Cannot be redefined
%assign constant_name expression
Can be redefined
%define constant_name string
Can be redefined

Example

Try constants.asm, focusing the definition of constants.

20 / 27

Arithmetic instructions (1)

inc destination

dec destination

add destination, source

sub destination, source

At least one operand must be different from memory address

Example

Try arith1.asm

21 / 27

Arithmetic instructions (2)

mul multiplier (unsigned integers, or natural numbers)
imul multiplier (signed integers, or integers)

Some operands are implicit depending on the size of the
multiplier

Example

Try arith2.asm

22 / 27

Arithmetic instructions (3)

div divisor (unsigned integers, or natural numbers)
idiv divisor (signed integers, or integers)

Example

Try arith3.asm

23 / 27

Logical instructions

Bitwise logical operations, storing the result in operand1:
and operand1, operand2

or operand1, operand2

xor operand1, operand2

not operand1

Bitwise AND, just setting flags (e.g., ZF is set to 1 if the AND is
0)

test operand1, operand2

24 / 27

Unconditional jump

jmp label
Set IP to the address of the given label

25 / 27

Conditional jump

j<condition> label

Often preceded by cmp operand1, operand2

It is like sub, but operand1 is not changed
Only flags are affected

Example: Try jumps.asm
26 / 27

END OF THE
LECTURE

27 / 27

