
Workshop ASI

Get Fun with Buffer Overflows

Mario Alviano

University of Calabria, Italy

23 June 2019, 9:30–12:30, Aula Seminari DIMEG

1 / 57

Outline

1 Introduction
Context and goal
Overview and example

2 Assembly
Warm up
Computer architecture
Most frequent instructions
C/C++ calling convention

3 Buffer overflow and shellcode
Simple examples
Privilege escalation
Help yourself with peda
Return-to-libc and ROP

4 Conclusion

2 / 57

Outline

1 Introduction
Context and goal
Overview and example

2 Assembly
Warm up
Computer architecture
Most frequent instructions
C/C++ calling convention

3 Buffer overflow and shellcode
Simple examples
Privilege escalation
Help yourself with peda
Return-to-libc and ROP

4 Conclusion

3 / 57

Outline

1 Introduction
Context and goal
Overview and example

2 Assembly
Warm up
Computer architecture
Most frequent instructions
C/C++ calling convention

3 Buffer overflow and shellcode
Simple examples
Privilege escalation
Help yourself with peda
Return-to-libc and ROP

4 Conclusion

4 / 57

Search for “buffer overflow” on CVE

5 / 57

An ever green

So many vulnerabilities related to buffer overflow
Severe consequences (especially for C/C++ programs)

Denial of service
Remote code execution
Privilege escalation

Who cares about C/C++

You should! Your OS is written in C/C++. Your browser too.

6 / 57

An ever green

So many vulnerabilities related to buffer overflow
Severe consequences (especially for C/C++ programs)

Denial of service
Remote code execution
Privilege escalation

Who cares about C/C++

You should! Your OS is written in C/C++. Your browser too.

6 / 57

Goal of this lecture

Understand low level mechanisms of program execution
Exploit common mistakes to deviate from standard
behavior
Craft and inject shellcodes
Practice with gdb and peda

We work with linux x86 (32-bits)

Just because it is simpler than other (64-bits) OSes for this
purpose

7 / 57

Outline

1 Introduction
Context and goal
Overview and example

2 Assembly
Warm up
Computer architecture
Most frequent instructions
C/C++ calling convention

3 Buffer overflow and shellcode
Simple examples
Privilege escalation
Help yourself with peda
Return-to-libc and ROP

4 Conclusion

8 / 57

Program execution

The CPU executes machine instructions
A register stores the instruction pointer (IP)
Conditional instructions are used to break sequentiality

The control section of the memory stores instructions
The data section contains program’s data

Such a separation is not always checked

9 / 57

Program execution

The CPU executes machine instructions
A register stores the instruction pointer (IP)
Conditional instructions are used to break sequentiality
The control section of the memory stores instructions
The data section contains program’s data

Such a separation is not always checked

9 / 57

Program execution

The CPU executes machine instructions
A register stores the instruction pointer (IP)
Conditional instructions are used to break sequentiality
The control section of the memory stores instructions
The data section contains program’s data

Such a separation is not always checked

9 / 57

Procedures

Programs are often split in procedures

Calling a procedure requires to modify IP
After the called procedure terminates, IP must return to the
callee procedure
This is achieved by storing the return address in the stack
Buffers local to a procedure are also stored in the stack

A buffer overflow may replace the return address

10 / 57

Procedures

Programs are often split in procedures
Calling a procedure requires to modify IP
After the called procedure terminates, IP must return to the
callee procedure

This is achieved by storing the return address in the stack
Buffers local to a procedure are also stored in the stack

A buffer overflow may replace the return address

10 / 57

Procedures

Programs are often split in procedures
Calling a procedure requires to modify IP
After the called procedure terminates, IP must return to the
callee procedure
This is achieved by storing the return address in the stack
Buffers local to a procedure are also stored in the stack

A buffer overflow may replace the return address

10 / 57

Procedures

Programs are often split in procedures
Calling a procedure requires to modify IP
After the called procedure terminates, IP must return to the
callee procedure
This is achieved by storing the return address in the stack
Buffers local to a procedure are also stored in the stack

A buffer overflow may replace the return address

10 / 57

The Morris Worm

The finger program

Provides information on user@machine

It had a buffer overflow
Assumed that people would rely on short names
Allocated only 11 bytes for user@machine (plus null
character)
Morris provided a long string to execute a shellcode

Why this attack was possible

Separation of data and instructions was not checked
finger ran with root privilege

11 / 57

The Morris Worm

The finger program

Provides information on user@machine

It had a buffer overflow
Assumed that people would rely on short names
Allocated only 11 bytes for user@machine (plus null
character)
Morris provided a long string to execute a shellcode

Why this attack was possible

Separation of data and instructions was not checked
finger ran with root privilege

11 / 57

The Morris Worm

The finger program

Provides information on user@machine

It had a buffer overflow
Assumed that people would rely on short names
Allocated only 11 bytes for user@machine (plus null
character)
Morris provided a long string to execute a shellcode

Why this attack was possible

Separation of data and instructions was not checked
finger ran with root privilege

11 / 57

Outline

1 Introduction
Context and goal
Overview and example

2 Assembly
Warm up
Computer architecture
Most frequent instructions
C/C++ calling convention

3 Buffer overflow and shellcode
Simple examples
Privilege escalation
Help yourself with peda
Return-to-libc and ROP

4 Conclusion

12 / 57

Outline

1 Introduction
Context and goal
Overview and example

2 Assembly
Warm up
Computer architecture
Most frequent instructions
C/C++ calling convention

3 Buffer overflow and shellcode
Simple examples
Privilege escalation
Help yourself with peda
Return-to-libc and ROP

4 Conclusion

13 / 57

What is assembly language?

The CPU manages arithmetical, logical, and control
activities
The CPU follows machine language instructions
Machine language instructions are strings in {0,1}∗

Assembly is almost one-to-one to machine language

14 / 57

Why studying an assembly language?

To understand the following:
How programs interface with OS, processor, and BIOS
How data is represented in memory and other external
devices
How the processor accesses and executes instruction
How instructions access and process data
How a program accesses external devices

15 / 57

Setup

We are going to use an online disassembler

https://godbolt.org/

Select C++ as language (on the left)
Select x86-64 gcc 4.8.1 as compiler (on the right)
Set -m32 as command-line option

16 / 57

https://godbolt.org/

Outline

1 Introduction
Context and goal
Overview and example

2 Assembly
Warm up
Computer architecture
Most frequent instructions
C/C++ calling convention

3 Buffer overflow and shellcode
Simple examples
Privilege escalation
Help yourself with peda
Return-to-libc and ROP

4 Conclusion

17 / 57

Memory segments

Text: assembly code
Data: global initialized
variables
BSS: global unitialized
variables
Heap: dynamically
allocated memory
Stack: local (and
temporary) memory

18 / 57

Registers of an x86 processor

General registers
Data registers
Pointer registers
Index registers

Control registers
and others

19 / 57

Data registers

Four 32-bit data registers
Used for arithmetic, logical and other operations
Can be also used as 16-bit or 8-bit data registers

AX, BX, CX, DX use bits 0-15

20 / 57

Pointer registers

Three 32-bit pointer registers
ESP: address of current top stack element
EBP: address of the stack frame

Can be also used as 16-bit pointer registers

21 / 57

Index registers

Two 32-bit index registers
Used for addressing memory
Can be also used as 16-bit pointer registers

22 / 57

Control registers
EIP: 32-bit instruction pointer register

Address of the next instruction to be executed

EFLAGS: 32-bit flags register
Overflow Flag (OF): 1 if the last arith. op. overflowed
Direction Flag (DF): left-to-right (0) or right-to-left (1)
processing of strings
Interrupt Flag (IF): ignore (0) or process (1) external
interrupts
Trap Flag (TF): 1 for single-step execution (to debug)
Sign Flag (SF): 0 if the last arith. op. gave a positive result
Zero Flag (ZF): 1 if the last arith. op. gave 0
Auxiliary Carry Flag (AF): the carry from bit 3 to bit 4 in the
last arith. op.
Parity Flag (PF): parity bit of the last arith. op.
Carry Flag (CF): the carry of the high-order bit in the last
arith. op. 23 / 57

Outline

1 Introduction
Context and goal
Overview and example

2 Assembly
Warm up
Computer architecture
Most frequent instructions
C/C++ calling convention

3 Buffer overflow and shellcode
Simple examples
Privilege escalation
Help yourself with peda
Return-to-libc and ROP

4 Conclusion

24 / 57

Arithmetic instructions

inc destination

dec destination

add destination, source

sub destination, source

At least one operand must be different from memory address

25 / 57

Logical instructions

Bitwise logical operations, storing the result in operand1:
and operand1, operand2

or operand1, operand2

xor operand1, operand2

not operand1

Bitwise AND, just setting flags (ZF is set to 1 if the AND is 0)
test operand1, operand2

26 / 57

Unconditional jump

jmp label
Set IP to the address of the given label

27 / 57

Conditional jump

j<condition> label

Often preceded by cmp operand1, operand2

It is like sub, but operand1 is not changed
Only flags are affected

28 / 57

Let’s try a few examples

Go to https://godbolt.org/ and try common
constructs
Colors help to understand how C/C++ is compiled into
assembly instructions
Assign unique constants to variables to easily identify them
Try if..then, if..then..else, while, do..while, for

29 / 57

https://godbolt.org/

Outline

1 Introduction
Context and goal
Overview and example

2 Assembly
Warm up
Computer architecture
Most frequent instructions
C/C++ calling convention

3 Buffer overflow and shellcode
Simple examples
Privilege escalation
Help yourself with peda
Return-to-libc and ROP

4 Conclusion

30 / 57

Stack instructions

push operand

pop address/register

Used for local variables
Used to create cached copies
Used for passing arguments to procedures

31 / 57

Subroutines

Subroutines are identified by labels
Subroutines are called by call label

Pushes EIP into the stack, and jumps to label

Each subroutine terminates with ret
Pops an address from the stack, and jumps to it

32 / 57

Calling convention

How to share subroutines?
We must agree on some strategy to pass paramenters
Several conventions do exist
We will consider the C/C++ convention
Essentially, use the stack!

Two sets of rules

1 The first set is for the caller
2 The second set is for the callee

33 / 57

Calling convention

How to share subroutines?
We must agree on some strategy to pass paramenters
Several conventions do exist
We will consider the C/C++ convention
Essentially, use the stack!

Two sets of rules

1 The first set is for the caller
2 The second set is for the callee

33 / 57

Caller rules

1 Push caller-saved registers: EAX, ECX, EDX
2 Push arguments in reverse order (allow varadics)
3 Use the call instruction (push return address, and jump)
4 Remove parameters from the stack (add their size to ESP)
5 Restore caller-saved registers (pop them from the stack)

34 / 57

Callee rules (1)

Subroutine Prologue
1 Push EBP, and then copy ESP into EBP

All parameters are in EBP-offset
2 Allocate local variables in the stack

Subtract their size from ESP
All local variables are in EBP+offset

3 Push callee-saved registers: EBX, EDI, ESI
35 / 57

Callee rules (2)

Subroutine Epilogue
1 Leave the return value in EAX
2 Restore callee-saved registers (pop them)
3 Deallocate local variables

Add their size to ESP
Better alternative, copy EBP into ESP

4 Restore the previous EBP (pop it)
5 Return to the caller by executing ret

36 / 57

Callee rules (3)

Instruction leave is equivalent to

mov esp, ebp

pop ebp

It is a shortcut for 3 and 4 in the previous slide.

37 / 57

Outline

1 Introduction
Context and goal
Overview and example

2 Assembly
Warm up
Computer architecture
Most frequent instructions
C/C++ calling convention

3 Buffer overflow and shellcode
Simple examples
Privilege escalation
Help yourself with peda
Return-to-libc and ROP

4 Conclusion

38 / 57

Outline

1 Introduction
Context and goal
Overview and example

2 Assembly
Warm up
Computer architecture
Most frequent instructions
C/C++ calling convention

3 Buffer overflow and shellcode
Simple examples
Privilege escalation
Help yourself with peda
Return-to-libc and ROP

4 Conclusion

39 / 57

Use assembly in C/C++

Use instruction __asm__(<assembly-code-here>)

Compile with -masm=intel

Example

Try find_start.c

40 / 57

Buffer overflow

Essentially, writing after the last element of an array
Target EIP to control execution of the running program

Example

1 Try buffer.c

41 / 57

Overflow into the return address

Try overflow.c
Function gets() does not bound its argument
Find the address of function unlinked_code, say
0x0804845b
Try the following:
for i in $(seq 30 50); do

echo $i;
python -c "print(’A’*$i + ’\x5b\x84\x04\x08’)" | a.out;

done

42 / 57

Outline

1 Introduction
Context and goal
Overview and example

2 Assembly
Warm up
Computer architecture
Most frequent instructions
C/C++ calling convention

3 Buffer overflow and shellcode
Simple examples
Privilege escalation
Help yourself with peda
Return-to-libc and ROP

4 Conclusion

43 / 57

Spawn a shell in C

Try shell.c
We modify the owner to root, and set the SUID bit

What all this means

Processes are associated with two user ids
Real UID: who started the process
Effective UID: for who the process acts

Similarly, there are real and effective group ids
If SUID is set, effective UID is set to the user owning the file
If SGID is set, effective GID is set to the group owning the
file
exec* functions start new processes... acting for the
effective user and group!

44 / 57

Spawn a shell in C

Try shell.c
We modify the owner to root, and set the SUID bit

What all this means

Processes are associated with two user ids
Real UID: who started the process
Effective UID: for who the process acts

Similarly, there are real and effective group ids

If SUID is set, effective UID is set to the user owning the file
If SGID is set, effective GID is set to the group owning the
file
exec* functions start new processes... acting for the
effective user and group!

44 / 57

Spawn a shell in C

Try shell.c
We modify the owner to root, and set the SUID bit

What all this means

Processes are associated with two user ids
Real UID: who started the process
Effective UID: for who the process acts

Similarly, there are real and effective group ids
If SUID is set, effective UID is set to the user owning the file
If SGID is set, effective GID is set to the group owning the
file
exec* functions start new processes... acting for the
effective user and group!

44 / 57

Our first shellcode

A shellcode is a set of machine instructions
Essentially, instructions spawning a shell
Try shellcode.c

Problems we have to face

Inject our shellcode in a vulnerable buffer
Jump to the first instruction of our shellcode

45 / 57

Our first shellcode

A shellcode is a set of machine instructions
Essentially, instructions spawning a shell
Try shellcode.c

Problems we have to face

Inject our shellcode in a vulnerable buffer
Jump to the first instruction of our shellcode

45 / 57

Shellcode injection

Try victim.c
How to inject our shellcode?

The NOP Method
<NOPs (0x90)> <shellcode> <padding> <saved return address>

We will jump in the NOP sled
The more NOPs, the more likely the injection
Follow the instructions

46 / 57

Shellcode injection

Try victim.c
How to inject our shellcode?

The NOP Method
<NOPs (0x90)> <shellcode> <padding> <saved return address>

We will jump in the NOP sled
The more NOPs, the more likely the injection
Follow the instructions

46 / 57

Outline

1 Introduction
Context and goal
Overview and example

2 Assembly
Warm up
Computer architecture
Most frequent instructions
C/C++ calling convention

3 Buffer overflow and shellcode
Simple examples
Privilege escalation
Help yourself with peda
Return-to-libc and ROP

4 Conclusion

47 / 57

GDB enanchement

There are a few enanchement for gdb
They add pretty printing functionalities

One of them is peda
Execute source <path to peda.py> in gdb

Download peda from github

https://github.com/longld/peda

48 / 57

https://github.com/longld/peda

GDB enanchement

There are a few enanchement for gdb
They add pretty printing functionalities
One of them is peda
Execute source <path to peda.py> in gdb

Download peda from github

https://github.com/longld/peda

48 / 57

https://github.com/longld/peda

Find offsets with peda (1)

Use pattern create to create a long pattern

Crash the process using the pattern

Use pattern offset to compute the offset

49 / 57

Find offsets with peda (1)

Use pattern create to create a long pattern

Crash the process using the pattern

Use pattern offset to compute the offset

49 / 57

Find offsets with peda (1)

Use pattern create to create a long pattern

Crash the process using the pattern

Use pattern offset to compute the offset

49 / 57

Find offsets with peda (2)

Use pattern search to find the address of the pattern

50 / 57

Build skeletons for your exploits

Use strings of the same length
Script your exploit as much as possible
Follow the instructions in peda.txt

51 / 57

Outline

1 Introduction
Context and goal
Overview and example

2 Assembly
Warm up
Computer architecture
Most frequent instructions
C/C++ calling convention

3 Buffer overflow and shellcode
Simple examples
Privilege escalation
Help yourself with peda
Return-to-libc and ROP

4 Conclusion

52 / 57

Return to libc (ret2libc)

Alternative to code injection
Just inject return addresses (and arguments)

Example

Replace the return address with the address of system()
Leave 4 bytes (it is the return address of system())
Write the address of the string to execute
Follow the instructions in ret2libc.txt

Return Oriented Programming (ROP)

Chain several calls to small instruction sets terminated by ret

53 / 57

Return to libc (ret2libc)

Alternative to code injection
Just inject return addresses (and arguments)

Example

Replace the return address with the address of system()
Leave 4 bytes (it is the return address of system())
Write the address of the string to execute
Follow the instructions in ret2libc.txt

Return Oriented Programming (ROP)

Chain several calls to small instruction sets terminated by ret

53 / 57

Return to libc (ret2libc)

Alternative to code injection
Just inject return addresses (and arguments)

Example

Replace the return address with the address of system()
Leave 4 bytes (it is the return address of system())
Write the address of the string to execute
Follow the instructions in ret2libc.txt

Return Oriented Programming (ROP)

Chain several calls to small instruction sets terminated by ret

53 / 57

Outline

1 Introduction
Context and goal
Overview and example

2 Assembly
Warm up
Computer architecture
Most frequent instructions
C/C++ calling convention

3 Buffer overflow and shellcode
Simple examples
Privilege escalation
Help yourself with peda
Return-to-libc and ROP

4 Conclusion

54 / 57

Protection mechanisms

NX bit: mark each memory segment as writable xor
executable

Protect against code injection

Canaries: memory after buffers store special values
Protect against buffer overflows
Usually randomized, and difficult to predict

AAAS: ASCII Armored Address Space
Start addresses of subroutines with \x00
Limit calls in case of overflows

ASLR: Address Space Layout Randomization
Randomly change addresses at each execution

55 / 57

Protection mechanisms

NX bit: mark each memory segment as writable xor
executable

Protect against code injection
Canaries: memory after buffers store special values

Protect against buffer overflows
Usually randomized, and difficult to predict

AAAS: ASCII Armored Address Space
Start addresses of subroutines with \x00
Limit calls in case of overflows

ASLR: Address Space Layout Randomization
Randomly change addresses at each execution

55 / 57

Protection mechanisms

NX bit: mark each memory segment as writable xor
executable

Protect against code injection
Canaries: memory after buffers store special values

Protect against buffer overflows
Usually randomized, and difficult to predict

AAAS: ASCII Armored Address Space
Start addresses of subroutines with \x00
Limit calls in case of overflows

ASLR: Address Space Layout Randomization
Randomly change addresses at each execution

55 / 57

Protection mechanisms

NX bit: mark each memory segment as writable xor
executable

Protect against code injection
Canaries: memory after buffers store special values

Protect against buffer overflows
Usually randomized, and difficult to predict

AAAS: ASCII Armored Address Space
Start addresses of subroutines with \x00
Limit calls in case of overflows

ASLR: Address Space Layout Randomization
Randomly change addresses at each execution

55 / 57

Take-home message

Vulnerabilities are due to security bug
Protection mechanisms are introduced to stop common
exploit on vulnerabilities
New exploitation techniques are developed on top of
previous techniques

If you don’t update your programs,
you are exposed to several known vulnerabilities

56 / 57

END OF THE
LECTURE

57 / 57

	Introduction
	Context and goal
	Overview and example

	Assembly
	Warm up
	Computer architecture
	Most frequent instructions
	C/C++ calling convention

	Buffer overflow and shellcode
	Simple examples
	Privilege escalation
	Help yourself with peda
	Return-to-libc and ROP

	Conclusion

